Abstract:
An improved micromechanical device comprising a substrate (104), a deflectable member (102) suspended over the substrate (104), at least one spring-ring (124) supported above the substrate (104); and at least one address electrode (110) spaced apart from substrate (104). The spring-ring (124) resists deflection of the deflectable member (102) when the deflectable member (102) deflects to contact the spring-ring (124). By moving the address electrode (110) off the substrate level, the micromirror is much more immune to particle-caused short circuits, and a planer surface on which to fabricate the mirror (102) is provided without the need to utilize an inverse spacer layer.
Abstract:
A spatial light modulator (70) comprised of an array of micromirrors (72) each having support post (74). The support post (74) defines support post edges (76) in the upper surface of the mirrors (72). These support post edges (76) are all oriented at 45 degree angles with respect to an incident beam of light from a light source (80) to minimize diffraction of light from the edges (76) into the darkfield optics when the mirrors are oriented in the off-state. The present invention achieves an increased contrast ratio of about 20% over conventional designs.
Abstract:
A system that incorporates teachings of the present disclosure may include, for example, a network device having a controller programmed to store a subscriber selectable preference for advertisements and for video channel distribution to send to a set top box (STB) and receive a signal from a broadcast stream indicating the location for insertion of an advertisement based on the subscriber selectable preference. Other embodiments are disclosed.
Abstract:
A method of ejecting a liquid includes providing a liquid dispenser including a substrate. A first portion of the substrate defines a liquid dispensing channel including an outlet opening. A second portion of the substrate defines a liquid supply channel and a liquid return channel. A diverter member is positioned on a wall of the liquid dispensing channel that includes the outlet opening. The diverter member includes a MEMS transducing member anchored to the wall of the liquid dispensing channel. A compliant membrane is positioned in contact with the MEMS transducing member. The diverter member is selectively actuated to divert a portion of the liquid flowing through the liquid dispensing channel through outlet opening of the liquid dispensing channel.
Abstract:
A fluid ejector includes a substrate, a MEMS transducing member, a compliant membrane, walls, and a nozzle. First portions of the substrate define an outer boundary of a cavity. Second portions of the substrate define a fluidic feed. A first portion of the MEMS transducing member is anchored to the substrate. A second portion of the MEMS transducing member extends over at least a portion of the cavity and is free to move relative to the cavity. The compliant membrane is positioned in contact with the MEMS transducing member. A first portion of the compliant membrane covers the MEMS transducing member. A second portion of the compliant membrane is anchored to the substrate. Partitioning walls define a chamber that is fluidically connected to the fluidic feed. At least the second portion of the MEMS transducing member is enclosed within the chamber. The nozzle is disposed proximate to the second portion of the MEMS transducing member and distal to the fluidic feed.
Abstract:
A continuous liquid ejection system includes a substrate defining a liquid chamber. An orifice plate, affixed to the substrate, includes a MEMS transducing member. The MEMS transducing member includes a first portion anchored to the substrate and a second portion extending over and free to move relative to the liquid chamber. A compliant membrane, positioned in contact with the MEMS transducing member, includes an orifice and a first portion covering the MEMS transducing member and a second portion anchored to the substrate. A liquid supply provides a liquid to the liquid chamber under a pressure sufficient to eject a continuous jet of the liquid through the orifice located in the compliant membrane. The MEMS transducing member is selectively actuated to cause a portion of the compliant membrane to be displaced relative to the liquid chamber to cause a drop of liquid to break off from the liquid jet.
Abstract:
A method of fabricating a MEMS composite transducer includes providing a substrate having a first surface and a second surface opposite the first surface. A transducing material is deposited over the first surface of the substrate. The transducing material is patterned by retaining transducing material in a first region and removing transducing material in a second region. A polymer layer is deposited over the first region and the second region. The polymer layer is patterned by retaining polymer in a third region and removing polymer in a fourth region. A first portion of the third region is coincident with a portion of the first region and a second portion of the third region is coincident with a portion of the second region. A cavity is etched from the second surface to the first surface of the substrate. An outer boundary of the cavity at the first surface of the substrate intersects the first region where transducing material is retained, so that a first portion of the transducing material is anchored to the first surface of the substrate and a second portion of the transducing material extends over at least a portion of the cavity.
Abstract:
A method of ejecting liquid includes providing a liquid dispenser including a substrate and a diverter member. A first portion of the substrate defines a liquid dispensing channel including an outlet opening and a second portion of the substrate defines an outer boundary of a cavity. Other portions of the substrate define a liquid supply channel and a liquid return channel. The diverter member includes a MEMS transducing member. A first portion of the MEMS transducing member is anchored to the substrate. A second portion of the MEMS transducing member extends over at least a portion of the cavity and is free to move relative to the cavity. A compliant membrane is positioned in contact with the MEMS transducing member. A first portion of the compliant membrane covers the MEMS transducing member. A second portion of the compliant membrane is anchored to the substrate such that the compliant membrane forms a portion of a wall of the liquid dispensing channel. The wall is positioned opposite the outlet opening. A continuous flow of liquid is provided from a liquid supply through the liquid supply channel through the liquid dispensing channel through the liquid return channel and back to the liquid supply. The diverter member is selectively actuated to divert a portion of the liquid flowing through the liquid dispensing channel through outlet opening of the liquid dispensing channel when drop ejection is desired.
Abstract:
A fluid ejector includes a substrate, a MEMS transducing member, a compliant membrane, walls, and a nozzle. First portions of the substrate define an outer boundary of a cavity. Second portions of the substrate define a fluidic feed. A first portion of the MEMS transducing member is anchored to the substrate. A second portion of the MEMS transducing member extends over at least a portion of the cavity and is free to move relative to the cavity. The compliant membrane is positioned in contact with the MEMS transducing member. A first portion of the compliant membrane covers the MEMS transducing member. A second portion of the compliant membrane is anchored to the substrate. Partitioning walls define a chamber that is fluidically connected to the fluidic feed. At least the second portion of the MEMS transducing member is enclosed within the chamber. The nozzle is disposed proximate to the second portion of the MEMS transducing member and distal to the fluidic feed.
Abstract:
An energy harvesting device includes a MEMS composite transducer. The MEMS composite transducer includes a substrate. Portions of the substrate define an outer boundary of a cavity. A MEMS transducing member includes a beam having a first end and a second end. The first end is anchored to the substrate and the second end cantilevers over the cavity. A compliant membrane is positioned in contact with the MEMS transducing member. A first portion of the compliant membrane covers the MEMS transducing member. A second portion of the compliant membrane is anchored to the substrate. The compliant member is configured to be set into oscillation by excitations produced externally relative to the energy harvesting device.