Abstract:
An optical communication system for ultrasound imaging systems employs a light source and photodetector array in the imaging console. The light source and photodetector array are coupled to each other through an optical fiber passing through the probe. Information from the probe is communicated to the console by an optical modulator, situated in the optical path from source to detector. The ultrasound signals are converted into electrical signals by probe electronics, and these electrical signals serve to alter either the phase or amplitude of optical signals passing through the modulator. Since the light source and photodetectors reside in the imaging console, very little power is dissipated in the probe.
Abstract:
A method for imaging a sample with a beam of vibratory energy from an array of transducers excites the array with successive ones of a plurality M of coded excitation signal sets with each set occurring in a different one of successive excitation time intervals. Each different set has signals with a different code. An excitation beam, produced by the array, is focused into the sample at successively smaller distances, along a selected ray path from the array, during each successive excitation time interval. A reception beam is focused along the ray path at successively greater distances from a minimum distance away from the array during each successive one of a like plurality of reception time intervals, for receiving, during each reception time interval, return response signals reflected from the sample. The received signals are processed and all channels are coherently summed prior to cross-correlating the summed signals with reference signals derived from the coded signals of the set used for the associated excitation time interval, to recover a response signal substantially only from a volume of the sample at that distance associated with each time interval. Apparatus for implementing this method is disclosed.
Abstract:
A technique has been developed which reduces blood-flow artifacts in multi-echo, multi-slice magnetic resonance (MR) imaging by rephasing spins which have arbitrary velocity as well as static spins. The technique requires tailoring of the gradient structure along at least one of the three axes so as to null out in the preferred embodiment the zeroth and first moments of the gradient distributions.
Abstract:
A method for minimizing the inhomogeneity of a static magnetic field, produced by a main magnet, over a selected arbitrary volume, by operation of a plurality N of shimming coils each independently producing an associated shimming magnetic field having an associated inhomogeneity which is a function of spatial location over that same volume, uses the steps of: measuring the magnitude of the main magnet field, in the absence of all shimming fields, at a plurality of locations X.sub.i upon the surface of an imaginary sphere enclosing the arbitrary volume; measuring the polarity and magnitude of each of the N shimming fields, with respect to the polarity and magnitude of a D.C. current flowing through the associated shimming coil, at the same plurality of locations X.sub.i upon the imaginary sphere surface; determining the weighted mean-square variation of the total field at each of another plurality of points Y.sub.i within the volume of said imaginary sphere; and (d) selecting the current magnitudes and polarities for each of the N shimming coils to provide each of the N associated shimming fields with magnitude and polarity to minimize the inhomogeneity of the main magnetic field in the arbitrary volume. The set of weighting coefficients may be selected to all be equal, or to emphasize at least one desired region of the arbitrary volume.
Abstract:
A conventional ultrasonic B-scan image is converted into a volume backscatter image by accounting for four propagation effects: dispersion of transmitted energy, beam width and beam intensity variations, inhomogeneous attenuation of ultrasonic energy, and signals resulting from specular reflections at interfaces. These images are a two-dimensional map of backscatter efficiency, are independent of details of the measurement system, and are quantitative images of an intrinsic property of tissue and other materials.
Abstract:
The present invention relates to multicomponent glasses and their use in powdered form as an additive in personal care products such as toothpastes.
Abstract:
An optimized elastic modulus reconstruction procedure can estimate the nonlinear elastic properties of vascular wall from intramural strain and pulse wave velocity (PWV) measurements. A noninvasive free-hand ultrasound scanning procedure is used to apply external force, comparable to the force in measuring a subject's blood pressure, to achieve higher strains by equalizing the internal arterial baseline pressure. PWV is estimated at the same location where intramural strain is measured. The reconstructed elastic modulus is optimized and the arterial elastic modulus can be determined and monitored using a simple dual elastic modulus reconstruction procedure.
Abstract:
The present invention relates to bioactive glass coatings. In particular, the present invention relates to bioactive glass coatings for Ti6Al4V alloys and chrome cobalt alloys, wherein the thermal expansion coefficient of the glass coating is matched to that of the alloy. Such coatings have a particular application in the field of medical prosthetics. The bioactive glass comprises (in mol %) 35-53 SiO2; 2-11 Na20; at least 2% of each of CaO, MgO and K20; 0-15 ZnO; 0-2 B202 and 0-9 P205.
Abstract:
An ultrasound system that detects a characteristic of an ultrasound wave. The system includes a circuit member defining a sensing portion operable to be exposed to the ultrasound wave. The system also includes a current generating device that generates a current in the sensing portion of the circuit member. Furthermore, the system includes a voltage sensor that detects a voltage across the sensing portion due to the exposure to the ultrasound wave to thereby detect the characteristic of the ultrasound wave.
Abstract:
An acoustic monitoring method and system in laser-induced optical breakdown (LIOB) provides information which characterize material which is broken down, microbubbles in the material, and/or the microenvironment of the microbubbles. In one embodiment of the invention, femtosecond laser pulses are focused just inside the surface of a volume of aqueous solution which may include dendrimer nanocomposite (DNC) particles. A tightly focused, high frequency, single-element ultrasonic transducer is positioned such that its focus coincides axially and laterally with this laser focus. When optical breakdown occurs, a microbubble forms and a shock or pressure wave is emitted (i.e., acoustic emission). In addition to this acoustic signal, the microbubble may be actively probed with pulse-echo measurements from the same transducer. After the microbubble forms, received pulse-echo signals have an extra pulse, describing the microbubble location and providing a measure of axial microbubble size. Wavefield plots of successive recordings illustrate the generation, growth, and collapse of microbubbles due to optical breakdown. These same plots can also be used to quantify LIOB thresholds.