Abstract:
The present invention relates to injectable compositions comprising biocompatible, swellable, substantially hydrophilic, non-toxic and substantially spherical polymeric material carriers which are capable of efficiently delivering bioactive therapeutic factor(s) for use in embolization drug therapy. The present invention further relates to methods of embolization gene therapy, particularly for the treatment of angiogenic and non-angiogenic-dependent diseases, using the injectable compositions.
Abstract:
The present invention relates to injectable compositions comprising biocompatible, swellable, hydrophilic, non-toxic and substantially spherical microspheres microspheres and a biocompatible carrier for use in dermal augmentation. The present invention further relates to methods of dermal augmentation, particularly for the treatment of skin contour deficiencies, using the injectable compositions.
Abstract:
The present invention relates to injectable compositions comprising biocompatible, swellable, substantially hydrophilic, non-toxic and substantially spherical polymeric material carriers which are capable of efficiently delivering bioactive therapeutic factor(s) for use in embolization drug therapy. The present invention further relates to methods of embolization gene therapy, particularly for the treatment of angiogenic and non-angiogenic-dependent diseases, using the injectable compositions.
Abstract:
The present invention relates to injectable compositions comprising biocompatible, swellable, substantially hydrophilic, non-toxic and substantially spherical polymeric material carriers which are capable of efficiently delivering bioactive therapeutic factor(s) for use in embolization drug therapy. The present invention further relates to methods of embolization gene therapy, particularly for the treatment of angiogenic and non-angiogenic-dependent diseases, using the injectable compositions.
Abstract:
The present invention relates to injectable compositions comprising biocompatible, swellable, hydrophilic, non-toxic and substantially spherical microspheres microspheres and a biocompatible carrier for use in dermal augmentation. The present invention further relates to methods of dermal augmentation, particularly for the treatment of skin contour deficiencies, using the injectable compositions.
Abstract:
The present invention relates to injectable compositions comprising biocompatible, swellable, substantially hydrophilic, non-toxic and substantially spherical polymeric material carriers which are capable of efficiently delivering bioactive therapeutic factor(s) for use in embolization drug therapy. The present invention further relates to methods of embolization gene therapy, particularly for the treatment of angiogenic and non-angiogenic-dependent diseases, using the injectable compositions.
Abstract:
The present invention relates to injectable compositions comprising biocompatible, hydrophilic, non-toxic and substantially spherical microspheres associated with stem cells useful for tissue construction and generation. The invention also relates to methods of tissue construction and generation, for the treatment of various tissue damage and defects, using the injectable compositions.
Abstract:
The present invention relates to injectable compositions comprising biocompatible, swellable, substantially hydrophilic, non-toxic and substantially spherical polymeric material carriers which are capable of efficiently delivering bioactive therapeutic factor(s) for use in embolization drug therapy. The present invention further relates to methods of embolization gene therapy, particularly for the treatment of angiogenic and non-angiogenic-dependent diseases, using the injectable compositions.
Abstract:
The present invention relates to injectable compositions comprising biocompatible, hydrophilic, non-toxic and substantially spherical microspheres associated with stem cells useful for tissue construction and generation. The invention also relates to methods of tissue construction and generation, for the treatment of various tissue damage and defects, using the injectable compositions.
Abstract:
The present invention relates to injectable compositions comprising biocompatible, swellable, substantially hydrophilic, non-toxic and substantially spherical polymeric material carriers which are capable of efficiently delivering bioactive therapeutic factor(s) for use in embolization drug therapy. The present invention further relates to methods of embolization gene therapy, particularly for the treatment of angiogenic and non-angiogenic-dependent diseases, using the injectable compositions.