Abstract:
A touch panel includes a first electrode plate and a second electrode plate connected to the first electrode plated. The first electrode plate includes a first substrate, and a first conductive layer disposed on the first substrate. The second electrode includes a second substrate, and a second conductive layer disposed on the second substrate. The first or the second conductive layer includes at least one carbon nanotube composite layer.
Abstract:
An exemplary backlight module includes a first light source, and a diffusing film. The diffusing film includes a light incident surface adjacent to the first light source, a light emitting surface located at an opposite side thereof, and a plurality of first reflective portions provided at the light incident surface. A pitch between every two adjacent first reflective portions progressively increases with increasing distance away from the first light source. A liquid crystal display employing the backlight module is also provided.
Abstract:
An organic light emitting diode is provided. The organic light emitting diode includes a substrate, an anode electrode structure formed on the substrate and including at least a metal layer and a metal oxide layer, an organic layer formed on the anode electrode structure and a cathode electrode structure formed on the organic layer. The metal oxide layer includes an oxide of the metal layer and has a thickness ranged between 1 to 50 nm
Abstract:
A method of utilizing color photoresist to form black matrix and spacers on a control circuit substrate is described. Utilizing the character of the red and the blue photoresist having a non-overlapping transmittance region in the visible light region, a black matrixes consisting of overlapping red and blue photoresist on control devices are used to prevent the photo current occurring in the off state of the control devices. In addition, three different color photoresist plus another-color photoresist are overlapped to form spacers on metal lines.
Abstract:
A process is provided for repairing a defect applied in producing a liquid crystal display, wherein the liquid crystal display includes a repair circuit structure, and at least one color filter and a liquid crystal formed on a front thereof. The process includes steps of (a) providing a laser having a wavelength of infrared spectrum, and (b) welding the repair circuit from a back of the liquid crystal display by the laser to repair the defect.
Abstract:
A method for fabricating a DRAM cell having a crown-type capacitor over a semiconductor substrate is disclosed. The method includes steps of: (a) forming a transistor over the semiconductor substrate; (b) forming an insulating layer over the transistor; (c) selectively etching the insulating layer to form a contact opening; (d) forming a first conducting layer over the insulating layer and filling into the contact opening; (e) forming an etching stop layer and a mask layer over the first conducting layer; (f) pattering the mask layer to form a plurality of openings; (g) forming a dielectric spacer on the sidewall of the mask layer, and removing exposed portions of the etching stop layer; (h) anisotropically etching the mask layer and the first conducting layer by using the dielectric spacer as a mask, to expose, respectively, the etching stop layer and the insulating layer; (i) removing uncovered etching stop layer to expose the first conducting layer; (j) anisotropically etching the first conducting layer to a predetermined depth by using the dielectric spacer as a mask, thereby forming a crown-type storage electrode; (k) removing the dielectric spacer and the etching stop layer; (l) forming a dielectric layer over exposed portions of the storage electrode; and (m) forming a second conducting layer as an opposite electrode over the dielectric layer.
Abstract:
The present invention discloses a DRAM structure with multiple memory cells sharing the same bit-line contact. The DRAM structure of the present invention comprises: a substrate; an active region formed on the substrate, with a center region and a plurality of protrusion regions connecting to the two sides of the center region; a plurality of word-lines, disconnected from each other, each crossing the corresponding protrusion region; a plurality of channel regions, formed where the protrusion region overlaps with the word-lines; a plurality of source regions, formed at the outer areas of the channel regions; a sharing drain region, formed at the center region of the active region; a bit-line contact, formed on surface of the sharing drain region; a bit-line, crossing the center region and electrically connected to the sharing drain region via the bit-line contact; a plurality of capacitors, electrically connected to the source regions; and a plurality of metal lines, electrically connected to the corresponding word-lines.
Abstract:
A thin film liquid crystal display, having a high aperture ratio, is described. Said display has been designed so as to reduce the incidence of short circuits between its various parts.This has been achieved by modifying the structure of the lower electrode of the storage capacitor. Said lower electrode is formed in the shape of a hollow square, two non-adjacent sides of said hollow square being at the level of the gate electrode, the other two sides of the hollow square being at the level of the data line. Two different means for providing electrical contact between all four sides of said lower capacitor electrode are described.A process for manufacturing the display is described.
Abstract:
A touch panel includes a first electrode plate and a second electrode plate spaced from the first electrode plate. The first electrode plate includes a first substrate, a plurality of first transparent electrodes, and a plurality of first signal wires. The second electrode plate includes a second substrate, a plurality of second transparent electrodes, and a plurality of second signal wires. Both the second transparent electrode and the first transparent electrode include a transparent carbon nanotube structure, the carbon nanotube structure includes of a plurality of metallic carbon nanotubes.
Abstract:
A liquid crystal display screen includes an upper board, a lower board opposite to the upper board, and a liquid crystal layer located between the upper board and the lower board. The upper board includes a touch panel. The touch panel includes an amount of transparent electrodes. At least one of the transparent electrodes includes a transparent carbon nanotube structure. The lower board includes a thin film transistor panel. The thin film transistor panel includes an amount of thin film transistors. Each of the thin film transistors includes a semiconducting layer. The semiconducting layer includes a semiconducting carbon nanotube structure.