摘要:
In certain aspects, the present invention provides compositions and methods for modulating (promoting or inhibiting) growth of a tissue, such as bone, cartilage, muscle, fat, and/or neuronal tissue. The present invention also provides methods of screening compounds that modulate activity of an ActRIIB protein and/or an ActRIIB ligand. The compositions and methods provided herein are useful in treating diseases associated with abnormal activity of an ActRIIB protein and/or an ActRIIB ligand.
摘要:
In certain aspects, the present disclosure relates to the insight that a polypeptide comprising a ligand-binding portion of the extracellular domain of activin-like kinase I (ALK1) polypeptide may be used to inhibit angiogenesis in vivo, particularly in mammals suffering angiogenesis-related disorders. Additionally, the disclosure demonstrates that inhibitors of ALK1 may be used to increase pericyte coverage in vascularized tissues, including tumors and the retina. The disclosure also identifies ligands for ALK1 and demonstrates that such ligands have pro-angiogenic activity, and describes antibodies that inhibit receptor-ligand interaction.
摘要:
The disclosure relates to Cerberus/Coco polypeptides or variants thereof for use in treating a variety of disorders associated with myostatin, nodal and GDF-11.
摘要:
Provided herein are glycovariant Fc fusion proteins having increased serum half lives. Also provided are methods for increasing the serum half life of an Fc fusion protein by introducing one or more non-endogenous glycosylation sites.
摘要:
In certain aspects, the present invention provides compositions and methods for promoting bone growth and increasing bone density, as well as for the treatment of multiple myeloma.
摘要:
In certain aspects, the present disclosure relates to the insight that a polypeptide comprising a ligand-binding portion of the extracellular domain of activin-like kinase I (ALK1) polypeptide may be used to inhibit angiogenesis in vivo, particularly in mammals suffering angiogenesis-related disorders. Additionally, the disclosure demonstrates that inhibitors of ALK1 may be used to increase pericyte coverage in vascularized tissues, including tumors and the retina. The disclosure also identifies ligands for ALK1 and demonstrates that such ligands have pro-angiogenic activity, and describes antibodies that inhibit receptor-ligand interaction.
摘要:
The disclosure relates to Cerberus/Coco polypeptides or variants thereof for use in treating a variety of disorders associated with myostatin, nodal and GDF-11.
摘要:
In certain aspects, the present disclosure relates to the insight that a polypeptide comprising a ligand-binding portion of the extracellular domain of activin-like kinase I (ALK1) polypeptide may be used to inhibit angiogenesis in vivo, particularly in mammals suffering angiogenesis-related disorders. In certain aspects, the disclosure demonstrates that antagonists of BMP9 and/or BMP10, ligands for ALK1, may also be used to inhibit angiogenesis in vivo.
摘要:
The disclosure relates to Lefty derivatives and the uses of Lefty polypeptides as antagonists of the function of certain ligands such as Nodal, GDF-8 (Myostatin), and GDF-11. These derivatives may be fused to other functional heterologous proteins such as IgG, especially the Fc portion of IgG. According to the disclosure, Lefty polypeptides are useful in the treatment of a variety of disorders, including, for example, neuronal diseases, muscle and bone conditions, and metabolic disorders.
摘要:
In certain aspects, the present disclosure relates to the insight that a polypeptide comprising a ligand-binding portion of the extracellular domain of activin-like kinase I (ALK1) polypeptide may be used to inhibit angiogenesis in vivo, particularly in mammals suffering angiogenesis-related disorders. Additionally, the disclosure demonstrates that inhibitors of ALK1 may be used to increase pericyte coverage in vascularized tissues, including tumors and the retina. The disclosure also identifies ligands for ALK1 and demonstrates that such ligands have pro-angiogenic activity, and describes antibodies that inhibit receptor-ligand interaction.