Abstract:
Systems and methods for minimally invasive discectomy procedures are described herein. The systems include a bendable flexible cannula may have a straight configuration suitable for insertion and withdrawal into spinal tissue, and a curved configuration suitable for accessing certain areas of a vertebral disc that may be difficult to reach in the straight configuration. A cannula is straightened by inserting a straight stylet therethrough. The straight stylet may have a deflectable region that facilitates its insertion into the cannula. Removal of a straight stylet from a cannula may allow the cannula to assume its curved configuration. The systems may be used with tissue removal devices, and certain variations of tissue removal devices may include a collector for aspiration, as well as a travel limiter to restrict inadvertent motions of the tissue removal devices within a vertebral structure.
Abstract:
Apparatus and methods are provided for treating female urinary incontinence by applying a form of energy to tissue in the vicinity of the urethra and/or bladder outlet to change tissue compliance without substantially narrowing the urethral and/or bladder outlet lumen. The apparatus comprises an elongated shaft having a means for treating urethral tissue and an expandable member deployable distal of the means for treating. The expandable member is configured to be anchored against the bladder outlet to dispose the means for treating at a desired treatment site in the urethra using only tactile feedback. The means for treating may include a needleless RF electrode, an ultrasound transducer, or a cryogenic probe configured to be advanced through a hollow needle, each of which are designed to reduce or eliminate symptoms associated with urinary incontinence.
Abstract:
The devices and methods generally relate to treatment of occluded body lumens. In particular, the present devices and method relate to removal of the occluding material from the blood vessels as well as other body lumens.
Abstract:
Disclosed herein are tissue-removal devices and methods for treating spinal diseases using such devices. The tissue-removal devices may comprise a cable and/or extendable elements with a retracted and a deployed configuration. The cable and/or extendable elements may be distally supported and restrained by a support element such that the support element may be pushed transversely away when the extendable element is distally extended into its deployed configuration. An annular cutting element may be provided about the distal end of the extendable element or the support element. Various configurations of the extendable and support elements are described herein, as well as methods of using tissue-removal devices with extendable and support elements coupled by an annular cutting element for treating spinal diseases.
Abstract:
Balloon cannula systems may be used for accessing and visualizing the spine and related methods of treatment, including a forward-looking balloon system for creating a working space and the balloon system having atraumatic dissection capability to allow visualization in spine. The devices and methods described may be used, for example, to perform annulus repair, herniated disc excision, and denervation of neurological tissue; to dispense pharmacological agents and/or cell or tissue therapy agents; to diagnose disc degeneration and bony degeneration, spinal stenosis, and nucleus decompression, and to perform disc augmentation.
Abstract:
The devices and methods generally relate to treatment of occluded body lumens. In particular, the present devices and method relate to removal of the occluding material from the blood vessels as well as other body lumens.
Abstract:
Retractor cannula systems may be used for accessing and visualizing the spine and related methods of treatment, including a forward-looking retractor cannula system for creating a working space and the retractor cannula system having atraumatic dissection capability to allow visualization in spine. The devices and methods described may be used, for example, to perform annulus repair, herniated disc excision, and denervation of neurological tissue; to dispense pharmacological agents and/or cell or tissue therapy agents; to diagnose disc degeneration and bony degeneration, spinal stenosis, and nucleus decompression, and to perform disc augmentation.
Abstract:
Systems and methods for treating spinal stenosis include endoscopic access devices and bone removal devices used to perform a foraminotomy or other bone removal procedures. A bone removal device includes a cannulotome with an endoscopic imaging lumen. Optionally, an endoscope retaining device can be used to facilitate advancement of the endoscope through the cannulotome.
Abstract:
Disclosed herein are tissue-removal devices and methods for treating spinal diseases using such devices. The tissue-removal devices may comprise a cable and/or extendable elements with a retracted and a deployed configuration. The cable and/or extendable elements may be distally supported and restrained by a support element such that the support element may be pushed transversely away when the extendable element is distally extended into its deployed configuration. An annular cutting element may be provided about the distal end of the extendable element or the support element. Various configurations of the extendable and support elements are described herein, as well as methods of using tissue-removal devices with extendable and support elements coupled by an annular cutting element for treating spinal diseases.
Abstract:
Apparatus and methods are provided for treating female urinary incontinence by applying a form of energy to tissue in the vicinity of the urethra and/or bladder outlet to change tissue compliance without substantially narrowing the urethral and/or bladder outlet lumen. The apparatus comprises an elongated shaft having a means for treating urethral tissue and an expandable member deployable distal of the means for treating. The expandable member is configured to be anchored against the bladder outlet to dispose the means for treating at a desired treatment site in the urethra using only tactile feedback. The means for treating may include a needleless RF electrode, an ultrasound transducer, or a cryogenic probe configured to be advanced through a hollow needle, each of which are designed to reduce or eliminate symptoms associated with urinary incontinence.