Abstract:
Disclosed herein is a housing member for a battery module, which is mounted to at least one side of the battery module such that a flow channel of refrigerant is defined in the battery module having unit cells stacked therein, wherein the housing member is provided with electrically connecting members for electrically connecting electrode terminals of the unit cells with each other and/or electrically connecting an external device to the electrode terminals, the electrically connecting members being integrally formed at the housing member. The housing member according to the present invention is manufactured in a structure in which the electrically connecting members are integrally formed at the housing member. Consequently, the manufacturing costs of the housing member are reduced. Furthermore, the assembly process of the battery module is greatly simplified, and the occurrence of short circuits caused by an engineer's mistake is effectively prevented.
Abstract:
Disclosed herein is a frame member for fabrication of a battery module including two battery cells, each of which has electrode terminals formed at upper and lower ends thereof, as unit cells. The frame member includes a lower-end frame having a groove, into which lower electrode terminals of the unit cells are inserted while the lower electrode terminals of the unit cells are coupled with each other, the lower-end frame being constructed such that lower-end sealing parts of the unit cells are mounted to the lower-end frame, an upper-end frame constructed such that upper-end sealing parts of the unit cells are mounted to the upper-end frame, and external input and output terminals, which are connected to upper electrode terminals of the unit cells, protrude from the outer surface of the upper-end frame, and a side frame connected between the lower-end frame and the upper-end frame, the side frame being constructed such that one-side sealing parts of the unit cells are mounted to the side frame. The frame member according to the present invention is effective in that a battery module is fabricated while the battery module has high mechanical strength, and the size and the weight of the battery module are minimized. Furthermore, it is possible to easily mount the detecting means that detects the operation of the battery cells. Consequently, the battery module is easily fabricated, and the occurrence of short circuits is effectively prevented during the assembly or the operation of the battery module.
Abstract:
A bus bar simultaneously performs electrical connection between unit cells and detection of voltage of the unit cells in a battery module having the same and includes: vertical bent parts formed by bending opposite ends of a strip-shaped bar body in the same direction, the vertical bent parts being provided with coupling grooves or protrusions; and a horizontal bent part formed by bending one of the vertical bent parts toward the bar body such that the horizontal bent part is parallel with the bar body. The electrode terminals of the unit cells are connected to the rear surface of the bar body of the bus bar, whereby the electrical connection between the unit cells is accomplished, and the horizontal bent part of the bus bar is directly connected to a battery management system for monitoring the potential difference and the temperature of the unit cells to control the unit cells.
Abstract:
Disclosed herein is a medium- or large-sized battery module having a plurality of battery cells (unit cells), wherein the battery module is constructed in a structure in which detection units for detecting physical operation state of the battery cells are mounted to the respective battery cells, the detection units are connected to a control unit of the battery module while the detection units are connected in series with each other, and signals (detected signals) detected from the respective battery cells are transmitted to the control unit while the detected signals are included in signals detected from the entire battery cells. The detection units are mounted to the respective battery cells, and therefore, the accuracy of information on the physical operation state of the battery cells is improved, and the circuit for transmitting the detected signals to the control unit is simple although the number of the detection units is large. Consequently, it is possible to construct a battery module having a simple structure. In addition, the volume change measurement sensors formed in a specific shape are used for a battery module using lithium secondary batteries as unit cells, and therefore, it is possible to accomplish the simple structure of the battery module with reduced costs and to secure the safety of the battery module with high accuracy.
Abstract:
A battery cartridge includes a pair of outer frame members for receiving unit cells and an inner frame member disposed between the outer frame members. The unit cells are mounted between the outer and inner frame members. The inner frame member has a plurality of through-holes, which communicate with the outside while the unit cells are mounted between the outer and inner frame members. An opened type battery module includes such a battery cartridge. The battery cartridge and the battery module have a high structural integration and mechanical strength. Consequently, the present invention has the effect of minimizing the size of a battery system, stably mounting unit cells having low mechanical strength, and effectively removing heat from the unit cells.
Abstract:
Disclosed herein are a secondary battery including an electrode assembly for charging and discharging mounted in a sheathing member including a metal layer and a resin layer, wherein the secondary battery further includes a secondary battery having a molding part of a predetermined thickness at least partially formed at the outside of a sheathing member, preferably, at a sealing region of the sheathing member, and a medium- or large-sized battery pack including the same. The molding part is formed at the outside of the sheathing member of the secondary battery. Consequently, the secondary battery according to the present invention has high mechanical strength, and therefore, it is possible to construct a battery pack without using addition members, such as cartridges. When the molding part is formed at the sealing region, which is weak, the molding part increases the mechanical strength and the sealing force of the secondary battery. Consequently, a battery pack including the secondary batteries as unit cells can be manufactured generally in a compact structure and with relatively small weight, and the assembly process of the battery pack is greatly simplified. The battery pack according to the present invention has high structural stability. Consequently, the battery pack can be preferably used as a power source for electric vehicles, hybrid electric vehicles, electric motorcycles, and electric bicycles.
Abstract:
Disclosed is a power switching module for a battery module assembly in which a plurality of rectangular battery modules, each having a plurality of battery cells or unit modules connected in series to each other, are stacked in the width (longitudinal) and height (transverse) direction by at least twos such that the battery modules constitute a hexahedral structure (hexahedral stack), outer edges of the hexahedral stack are fixed by a frame member, and input and output terminals of the battery modules are oriented such that the input and output terminals of the battery modules are directed toward one surface (a) of the stack, wherein the power switching module comprises an insulative substrate mounted to the surface (a) of the stack, elements mounted on the substrate for controlling voltage and current during charge and discharge of the battery modules, and connection members mounted on the substrate for interconnecting the control elements.
Abstract:
Disclosed herein is a battery cartridge having two or more unit cells mounted therein, wherein the battery cartridge includes a rotation part, which is formed at a cartridge case constructed generally with a plate-shaped structure, in the longitudinal direction of the battery cartridge and/or in the lateral direction of the battery cartridge, such that the battery cartridge can be folded by a predetermined angle in the longitudinal direction of the battery cartridge and/or in the lateral direction of the battery cartridge. The battery cartridge can be folded by a predetermined angle through the provision of the rotation part, and therefore, the battery cartridge is constructed in various structures as compared to the conventional rigid battery cartridge.
Abstract:
The present invention is a secondary battery, which is formed in the shape of a plate and has an electrode assembly mounted in a battery case made of a laminated sheet including a metal layer and a resin layer, wherein the secondary battery is constructed in a structure in which independent coupling type frame members are mounted to the outside part of a sheathing member serving as the battery case, and a medium- or large-sized battery module including the same as a unit cell.
Abstract:
A battery cartridge-connecting system for battery modules including bus bars, each of which includes a plate-shaped bar body, coupling parts, and electrical connection parts; a base plate, to which the bus bars are easily mounted; and a printed circuit board (PCB), which is easily coupled to the bus bars and is mounted to the base plate in a compact structure. The present invention also provides a battery module and a medium- or large-sized battery system including the battery cartridge-connecting system.