摘要:
Vertex data can be accessed for a graphics primitive. The vertex data includes homogeneous coordinates for each vertex of the primitive. The homogeneous coordinates can be used to determine perspective-correct barycentric coordinates that are normalized by the area of the primitive. The normalized perspective-correct barycentric coordinates can be used to determine an interpolated value of an attribute for the pixel. These operations can be performed using adders and multipliers implemented in hardware.
摘要:
A method of computing z parameters for pixels of a geometric primitive. The method includes the step of accessing the geometric primitive comprising a plurality of vertices, wherein each vertex comprises a plurality of associated parameters including a depth parameter, z. During rasterization of the geometric primitive, respective z values are interpolated for each pixel of the geometric primitive. Each z value is represented within a predefined numerical range which substantially corresponds to a depth range between a near plane and a far plane related to pixel rendering. During the interpolating, the z values are allowed to exceed the predefined numerical range and roll over within the predefined numerical range. A multi-bit indicator is used to indicate when a z value for a pixel is outside of the depth range.
摘要:
A method determining LOD values for a geometric primitive, in accordance with one embodiment of the present invention, includes accessing a plurality of geometric parameters of a vertex. An LOD value for a vertex is calculated as a function of the plurality of parameters of the vertex in a setup module. In a raster module an LOD value for a pixel is interpolated as a function of the LOD value of the pixel corresponding to the vertex and a view distance of the non-vertex pixel.
摘要:
Embodiments of the present invention pixel processing system and method provide convenient and efficient processing of pixel information. In one embodiment, quotient-remainder information associated with barycentric coordinate information indicating the location of a pixel is received. In one exemplary implementation quotient-remainder information is associated with barycentric coordinate information through the relationship c divided by dcdx, where c is the barycentric coordinate for a particular edge and dcdx is the derivative of the barycentric coordinate in the screen horizontal direction. The relationship of a pixel with respect to a primitive edge is determined based upon the quotient-remainder information. For example, a positive quotient can indicate a pixel is inside a triangle and a negative quotient can indicate a pixel is outside a triangle. Pixel processing such as shading is performed in accordance with the relationship of the pixel to the primitive.
摘要:
A system and method for a data write unit in a 3-D graphics pipeline including generic cache memories. Specifically, in one embodiment a data write unit includes a first memory, a plurality of cache memories and a data write circuit. The first memory receives a pixel packet associated with a pixel. The pixel packet includes data related to surface characteristics of the pixel. The plurality of cache memories is coupled to the first memory for storing pixel information associated with a plurality of surface characteristics of a plurality of pixels. Each of the plurality of cache memories is programmably associated with a designated surface characteristic. The data write circuit is coupled to the first a memory and the plurality of cache memories. The data write circuit is operable under program control to obtain designated portions of the pixel packet for storage into the plurality of cache memories.
摘要:
A method in system for latency buffered scoreboarding in a graphics pipeline of a graphics processor. The method includes receiving a graphics primitive for rasterization in a raster stage of a graphics processor and rasterizing the graphics primitive to generate a plurality pixels related to the graphics primitive. An ID stored to account for an initiation of parameter evaluation for each of the plurality of pixels as the pixels are transmitted to a subsequent stage of the graphics processor. A buffer is used to store the fragment data resulting from the parameter evaluation for each of the plurality of pixels by the subsequent stage. The ID and the fragment data from the buffering are compared to determine whether they correspond to one another. The completion of parameter evaluation for each of the plurality of pixels is accounted for when the ID and the fragment data match and as the fragment data is written to a memory.
摘要:
An apparatus is disclosed. The apparatus comprises an instruction mapping table, which includes a plurality of instruction counts and a plurality of instruction pointers each corresponding with one of the instruction counts. Each instruction pointer identifies a next instruction for execution. Further, each instruction count specifies a number of instructions to execute beginning with the next instruction. The apparatus also has a data operation unit adapted to receive a data group and adapted to execute on the received data group the number of instructions specified by a current instruction count of the instruction mapping table beginning with the next instruction identified by a current instruction pointer of the instruction mapping table before proceeding with another data group.
摘要:
Image-based data, such as a block of texel data, is accessed. The data includes sets of color component values. A luminance value is computed for each set of color components values, generating a range of luminance values. A first set and a second set of color component values that correspond to the minimum and maximum luminance values are selected from the sets of color component values. A third set of color component values can be mapped to an index that identifies how the color component values of the third set can be decoded using the color component values of the first and second sets. The index value is selected by determining where the luminance value for the third set lies in the range of luminance values.
摘要:
Briefly, in accordance with one or more embodiments, a reconfigurable 3D graphics processor includes a pipeline configuration manager, a rasterizer, and a memory coupled to the triangle rasterizer. The pipeline configuration manager is capable of configuring the graphics processor to operate in a direct rasterizing mode or a tiling mode to process a sequence of drawing commands received from a processing unit.
摘要:
An arithmetic logic stage in a graphics processor unit pipeline includes a number of arithmetic logic units (ALUs) and at least one buffer that stores pixel data for a group of pixels. Each clock cycle, the buffer stores one row of a series of rows of pixel data. A deserializer deserializes the rows of pixel data before the pixel data is placed in the buffer. After the buffer accumulates all rows of pixel data for a pixel, then the pixel data for the pixel can be operated on by the ALUs.