Abstract:
A method of operating a high temperature fuel cell system containing a plurality of fuel cell stacks includes operating one or more of the plurality of fuel cell stacks at a first output power while operating another one or more of the plurality of the fuel cell stacks at a second output power different from the first output power.
Abstract:
An electrochemical system includes a reversible fuel cell system which generates electrical energy and reactant product from fuel and oxidizer in a fuel cell mode and which generates the fuel and oxidant from the reactant product and the electrical energy in an electrolysis mode. The system also includes a reactant product delivery device which is adapted to supply the reactant product to the reversible fuel cell system operating in the electrolysis mode, in addition to or instead of the reactant product generated by the reversible fuel cell system in the fuel cell mode, and a fuel removal device which is adapted to remove the fuel generated by the reversible fuel cell system operating in the electrolysis mode from the electrochemical system.
Abstract:
An aircraft contains a plurality of solid oxide fuel cells located in different portions of the aircraft. A method of operating the plurality of solid oxide fuel cells includes providing power from each of the plurality of solid oxide fuel cells to at least one of a plurality of power consuming components located in a same portion of the aircraft as the solid oxide fuel cell. Another method of operating at least one solid oxide fuel cell located in an aircraft includes providing ambient air and power to the solid oxide fuel cell without providing fuel to the solid oxide fuel cell to generate oxygen for the aircraft cabin when the aircraft is in flight. Another method of operating at least one solid oxide fuel cell located in a passenger aircraft includes providing water from the solid oxide fuel cell to the aircraft cabin.
Abstract:
A fuel cell system includes a plurality of fuel cells, a plurality of interconnects, and a hydrogen separation device, wherein the hydrogen separation device separates hydrogen from the fuel cell stack anode exhaust. The separated hydrogen is then reintroduced into the fuel cell stack to optimize overall system efficiency. Monitoring of the performance of the hydrogen separation device gives an indication as to the fuel cell system performance.
Abstract:
A method of making a solid oxide fuel cell (SOFC) includes providing a solid oxide electrolyte and depositing at least one electrode on the electrolyte by PVD, such as sputtering. A method of making an interconnect for a fuel cell stack includes providing an electrically conductive interconnect, and depositing a layer on the interconnect by PVD, such as depositing a LSM barrier layer by sputtering. The SOFC and the interconnect may be located in the same fuel cell stack.
Abstract:
A method for charging electric vehicles includes receiving information regarding an electric vehicle. At least a portion of the information is received through a vehicle interface configured to place a battery of the electric vehicle into electrical communication with a fuel cell system. A charge is delivered from the fuel cell system to the battery of the electric vehicle through the vehicle interface without use of a direct current to alternating current (DC/AC) converter. The charge is delivered based at least in part on the information.
Abstract:
A solid oxide regenerative fuel cell system is used to supply power in a fuel cell mode and to generate metabolic oxygen and a hydrocarbon fuel reserve in an electrolysis mode. The system may also be used as a secondary power source or for energy peak shaving applications.
Abstract:
An electrochemical system includes a reversible fuel cell system which generates electrical energy and reactant product from fuel and oxidizer in a fuel cell mode and which generates the fuel and oxidant from the reactant product and the electrical energy in an electrolysis mode. The system also includes a reactant product delivery device which is adapted to supply the reactant product to the reversible fuel cell system operating in the electrolysis mode, in addition to or instead of the reactant product generated by the reversible fuel cell system in the fuel cell mode, and a fuel removal device which is adapted to remove the fuel generated by the reversible fuel cell system operating in the electrolysis mode from the electrochemical system.