Abstract:
A magnetic resonance (MR) system (10) for guidance of a shaft or needle (16) to a target (14) of a subject (12) is provided. The system includes a user interface (76). The user interface (76) includes a frame (78) positioned on a surface of the subject (12). The frame (78) includes an opening (82) over an entry point of a planned trajectory for the shaft or needle (16). The planned trajectory extends from the entry point to the target (14). The user interface (76) further includes one or more visual indicators (80) arranged on the frame (78) around the opening (82). The one or more visual indicators (80) at least one of: 1) visually indicate deviation of the shaft or needle (16) from the planned trajectory; and 2) visually indicate a current position of a real-time slice of real-time MR images.
Abstract:
A TEM resonator system is disclosed comprising at least two TEM resonators (21,31; 22, 32), especially in the form of TEM volume coils, and especially for use in an MR imaging system or apparatus for transmitting RF excitation signals and/or for receiving MR signals into/from an examination object or a part thereof, respectively, wherein the TEM resonators are arranged and displaced along a common longitudinal axis and wherein an intermediate RF shield (4) is positioned in longitudinal direction between the two TEM resonators for at least substantially preventing electromagnetic radiation from emanating from between the first TEM resonator and the second TEM resonator into the surroundings. A PET detector and/or another supplementary element can be placed in the volume between the two TEM resonators.
Abstract:
To obtain feedback on image quality from qualified reviewers, an optically machine readable code (124) (e.g., a QR code or the like) is generated for each acquired medical image and embedded into the image. The embedded code includes information to the identity of the image, the imaging device, authorized reviewers, and authorized recipients of the feedback, as well as a link to a feedback form that can be retrieved by a communication device (38) used by an authorized user. When the embedded code is scanned by the communication device, the code is decoded and the feedback form is retrieved from a server, completed by the reviewer, and transmitted back to the authorized recipients of the feedback.
Abstract:
Presented are concepts for matching a subject to one or more resources or workflow steps. Once such concept comprises obtaining data associated with a subject, the data comprising, for each of a plurality of parameters, a parameter value relating to the subject. A plurality of data groups for characterising the subject is then generated and a classification process is applied to each data group so as to generate a classification result for each data group. The subject is then matched to one or more resources or workflow steps based on the classification results.
Abstract:
The invention provides for a magnetic resonance imaging system (100, 200) comprising a memory (148) for storing machine executable instructions (150) and pulse sequence commands (152). The pulse sequence commands are configured for acquiring a four dimensional magnetic resonance data set (162) from an imaging region of interest (109). The four dimensional magnetic resonance data set is at least divided into three dimensional data magnetic resonance data sets (400, 402, 404, 406, 408) indexed by a repetitive motion phase of the subject. The three dimensional data magnetic resonance data sets are further at least divided into and indexed by k-space portions (410, 412, 414, 416, 418, 420, 422, 424, 426, 428, 430, 432, 434, 436). The magnetic resonance imaging system further comprises a processor (144) for controlling the magnetic resonance imaging system. Execution of the machine executable instructions causes the processor during a first operational portion (310) to iteratively: receive (300) a motion signal (156) descriptive of the repetitive motion phase; acquire (302) an initial k-space portion using the pulse sequence commands, wherein the initial k-space portion is selected from the k-space portions; store (304) the motion signal and the initial k-space portion in a buffer (158) for each iteration of the first operational portion; at least partially construct (306) a motion phase mapping (160) between the motion signal and the repetitive motion phase; and continue (308) the first operational portion until the motion phase mapping is complete. Execution of the machine executable instructions causes the processor to assign (312) the initial k-space portion for each iteration of the first operational portion in the temporary buffer to the four dimensional magnetic resonance data set using the motion phase mapping. Execution of the machine executable instructions causes the processor during a second operational portion (332) to iteratively: receive (314) the motion signal; determine (316) a predicted next motion phase using the motion signal and the motion phase mapping; select (318) a subsequent k-space portion (154) from the k-space portions of the four dimensional magnetic resonance data set using the predicted next motion phase; acquire (320) the subsequent k-space portion using the pulse sequence commands; rereceive (322) the motion signal; determine (324) a current motion phase using the re-received motion signal and the motion phase mapping; assign (326) the subsequent k-space portion to the four dimensional magnetic resonance data set using the current motion phase; and repeat (328) the second operational portion until the k-space portions for each repetitive motion phase has been assigned.
Abstract:
A medical device for multiple treatment therapies includes a hollow tube (102) having a first end portion with an electrode (104) disposed at the first end portion and an insulator (108) configured over a length of the tube such that conductive materials of the tube, except for the electrode, are electrically isolated from an exterior surface the tube. A conductive connection (127) is configured to electrically couple to the electrode to provide a voltage thereto. A selectively closeable valve (106) is configured to dispense a medical fluid from the tube.
Abstract:
A medical apparatus (300, 400, 500) includes a magnetic resonance imaging system (306); magnetic compensation coils (334, 335) for compensating for magnetic inhomogeneities within the imaging zone; a gantry (308) operable for rotating about the imaging zone; a position sensor (312) for measuring the angular position and the angular velocity of the gantry; at least one magnetic field distorting component (310, 510, 512) in the gantry; and a memory (362) storing machine executable instructions (380, 382, 410, 530, 532) and field correction data (372). The instructions cause a processor to: receive (100, 200) the position and angular velocity data from the position sensor; determine (102, 202) coil control commands (374) for controlling the magnetic compensation coils using the field correction data, the position data and the angular velocity data; control (104, 204) the magnetic compensation coils to compensate for magnetic inhomogeneities within the imaging zone using the coil control commands; and acquire (106, 212) the magnetic resonance data.
Abstract:
An interventional therapy system may include at least one controller which may obtain a reference image dataset of an object of interest (OOI); segment the reference image dataset to determine peripheral outlines of the OOI in the plurality image slices; acquire a current image of the OOI using an ultrasound probe; select a peripheral outline of a selected image slice of the plurality of slices of the reference image dataset which is determined to correspond to the current image; and/or modify the selected peripheral outline of the image slice of the plurality of slices of the reference image dataset in accordance with at least one deformation vector.
Abstract:
A combined magnetic resonance (MR) and radiation therapy system includes a bore-type magnet with a magnet radiation translucent region which allows radiation beams to travel radially through the magnet and a split-type gradient coil includes a gradient coil radiation translucent region aligned to the magnet radiation translucent region. A radiation source, disposed laterally to the magnet, administers a radiation dose through the magnet and gradient coil radiation translucent regions to an examination region. A dosage unit determines the actual radiation dose delivered to each voxel of a target volume and at least one non-target volume based on a pre-treatment, intra-treatment, and/or post-treatment image representation of the target volume and the at least one non-target volume. A planning processor updates at least one remaining radiation dose of a radiation therapy plan based on the determined actual radiation dose.
Abstract:
A patient bed, particularly for use in a magnetic resonance (MR) imaging-guided therapy system employing at least one out of ionizing radiation and ultrasound energy for therapy purposes, having an abdominal support portion (14) for supporting an abdominal region (18) of a subject (12) during magnetic resonance-guided therapy, comprising at least one magnetic resonance (MR) radio frequency (RF) antenna device (48) arranged at a top side (26) of the patient bed in a patient bed center region (30), with at least one MR RF antenna (50) that is enclosed in a housing (52) having two side surfaces (54) opposing each other, wherein, in at least one state of operation, each side surface (54) of the MR RF antenna device (48) is provided to be proximal to an inner side of each of the subject's legs (22), and wherein, in the at least one state of operation, the MR RF antenna device (48) is provided to be proximal to a subject's perineum (20); an MR radio frequency (RF) antenna device (48) therefor; and a therapy system employing at least one out of ionizing radiation and ultrasound energy for therapy purposes that is guided by an MR imaging device with a patient bed having at least one MR radio frequency (RF) antenna device (48).