Abstract:
According to one embodiment of the present invention, there is provided a catalyst compound, which comprises a compound of Chemical Formula 1 below and catalyzes the process of oxidizing 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA): NiCoxPy [Chemical Formula 1] (wherein x and y are the molar ratio for Ni contained in the catalyst compound, 0
Abstract:
Provided are a photoelectrode for hydrogen generation in solar water splitting and a manufacturing method thereof. The photoelectrode for hydrogen generation in solar water splitting, includes a light absorbing layer including a chalcopyrite compound; and a hydrogen generation catalyst including CuxS (where 0≤x≤2) which is present on the light absorbing layer, and may be manufactured by using a solution process which enables mass production and produce hydrogen from water using sunlight with high efficiency without using a noble metal element.
Abstract:
The present disclosure relates to an integrated color solar cell for a window, and more specifically, to an integrated color solar cell for a window very suitable as a window-type as the efficiency of the solar cell is excellent, the stability of a substrate is improved, and the precise color reproduction is possible by minimizing light loss existing in the solar cell while relative harvesting efficiency and relative current density are improved without open circuit reduction by suppressing light reflection, and a manufacturing method thereof.
Abstract:
The present disclosure relates to a strain capable of producing succinate using starch accumulated in microalgae which grow using carbon dioxide as a direct carbon source without converting it to glucose and a method for producing succinate using the same. The present disclosure provides a strain producing succinate from carbon dioxide, selected from a group consisting of Corynebacterium glutamicum BL-1-pBlAmyS (KCTC 12585BP) and Corynebacterium glutamicum BL-1-pSbAmyA (KCTC 12587BP). The present disclosure also provides a method for producing succinate from carbon dioxide, including fermenting starch by inoculating the strain producing succinate from carbon dioxide in a starch-containing medium.
Abstract:
Disclosed is a bifacial thin film solar cell that is applicable to a BIPV window, particularly a bifacial CIGS thin film solar cell that can generate electricity by both sunlight and indoor illumination due to its ability to absorb light at both front and rear sides. According to several embodiments, visible light in a particular wavelength region can be transmitted through the semi-transparent thin film solar cell. In addition, high stability and safety of the thin film solar cell can be ensured because there is no need to use organic materials and liquid electrolytes. Furthermore, the fabrication cost of the thin film solar cell can be reduced by a low cost solution process. The thin film solar cell exhibits various other effects described in the specification.
Abstract:
Disclosed is a bifacial thin film solar cell, particularly a bifacial CuInGaS, thin film solar cell, fabricated by a paste coating method. According to several embodiments, the bifacial thin film solar cell results in a higher conversion efficiency of bifacial illumination than the simple sum of the efficiencies of upper and lower side illumination only, unlike those previously reported. The bifacial thin film solar cell exhibits many other effects described in the specification.
Abstract:
Disclosed are methods for producing chalcopyrite compound (e.g., copper indium selenide (CIS), copper indium gallium selenide (CIGS), copper indium sulfide (CIS) or copper indium gallium sulfide (CIGS)) thin films. The methods are based on solution processes, such as printing, particularly, multi-stage coating of pastes or inks of precursors having different physical properties. Chalcopyrite compound thin films produced by the methods can be used as light-absorbing layers for thin-film solar cells. The use of the chalcopyrite compound thin films enables the fabrication of thin-film solar cells with improved efficiency at low costs.