Abstract:
The present specification discloses a transformed Synechococcus elongatus strain which may directly produce squalene from carbon dioxide, and a method for producing squalene and a method for removing carbon dioxide, using the same. In an aspect, the strain may produce squalene using carbon dioxide as a carbon source. The Synechococcus elongatus strain is economically efficient because a high-value added squalene is produced using light and carbon dioxide present in the atmosphere as a carbon source, and the method for producing squalene is eco-friendly because the strain may be utilized to remove or reduce carbon dioxide in the atmosphere by using microorganisms. The strain of the present disclosure may produce only squalene, which is a desired target material with high purity, and has an advantage in that squalene may be continuously mass-produced.
Abstract:
The present disclosure discloses a transformed Synechococcus elongatus strain capable of producing biodiesel directly from carbon dioxide and a method for producing biodiesel and a method for removing carbon dioxide using the same. In an aspect, the transformed Synechococcus elongatus strain of the present disclosure can produce biodiesel in large scale using carbon dioxide as a carbon source. The Synechococcus elongatus strain is environment-friendly because it can be used to remove or reduce carbon dioxide in the atmosphere. The strain of the present disclosure is advantageous in that it can produce biodiesel in large scale because it grows faster and exhibits excellent carbon dioxide fixation capability as compared to other photosynthetic microorganisms.
Abstract:
The present disclosure discloses a vector that can be used for both cyanobacteria and E. coli, which contains, sequentially, a pUC replication origin as a replication origin; a spectinomycin-resistant gene as a selection marker; and a promoter selected from a group consisting of a trc promoter, a tetA promoter or a modified tetA promoter, a BAD promoter and a cbbL promoter. An industrially useful substance may be produced effectively using a host cell transformed with the vector. Also, the vector may be used to insert a variety of target genes through simple combination and, as a result, various vectors can be prepared effectively.
Abstract:
A method for isolating a highly furfural-resistant strain is disclosed. The method includes (A) mixing soil with an isotonic solution and collecting the soil supernatant from the mixture, (B) diluting the soil supernatant and spreading the dilution on a medium supplemented with carboxymethyl cellulose as a nutrient source, and (C) growing a desired strain by culture in the medium spread with the diluted soil supernatant and isolating the strain. Also disclosed is a strain isolated by the method. The strain is Enterobacter cloacae strain GGT036 [Accession No. KCTC 12672BP].
Abstract:
Disclosed is a shuttle vector that can be used for Corynebacterium and E. coli, containing: a repressor selected from a group consisting of a lacI repressor and a tetR repressor; a promoter selected from a group consisting of a trc promoter, a tetA promoter and a LacUV5 promoter; a replication origin pBL1 derived from Corynebacterium glutamicum; and a replication origin ColE1 of E. coli. A host cell transformed with the shuttle vector can effectively produce industrially useful substances. Also, the shuttle vector may be used to easily insert various combinations of target genes and, as a result, a variety of vectors can be prepared effectively.
Abstract:
The present disclosure relates to a strain capable of producing succinate using starch accumulated in microalgae which grow using carbon dioxide as a direct carbon source without converting it to glucose and a method for producing succinate using the same. The present disclosure provides a strain producing succinate from carbon dioxide, selected from a group consisting of Corynebacterium glutamicum BL-1-pBlAmyS (KCTC 12585BP) and Corynebacterium glutamicum BL-1-pSbAmyA (KCTC 12587BP). The present disclosure also provides a method for producing succinate from carbon dioxide, including fermenting starch by inoculating the strain producing succinate from carbon dioxide in a starch-containing medium.