Abstract:
Provided is a sample property detecting apparatus including: a wave source configured to irradiate a wave towards a sample; a detector configured to detect a laser speckle that is generated when the wave is multiple-scattered by the sample, at every time point that is set in advance; and a controller configured to obtain a temporal correlation that is a variation in the detected laser speckle according to time, and to detect properties of the sample in real-time based on the temporal correlation, wherein the detector detects the laser speckle between the sample and the detector or from a region in the detector.
Abstract:
A single-channel phase conjugation apparatus includes a spatial light modulator and a single-channel optical sensing and generating unit. The spatial light modulator receives a light having a wavefront scattered by a scattering object. The single-channel optical sensing and generating unit senses a phase control wavefront of an output light focused by the spatial light modulator and outputs a light having a phase conjugation wavefront by changing a direction of the output light in a reverse direction depending on the phase control wavefront.
Abstract:
An ultra-high-speed 3D refractive index tomography and structured illumination microscopy system using a wavefront shaper and a method using the same are provided. A method of using an ultra-high-speed 3D refractive index tomography and structured illumination microscopy system that utilizes a wavefront shaper includes adjusting an irradiation angle of a plane wave incident on a sample by using the wavefront shaper, measuring a 2D optical field, which passes through the sample, based on the irradiation angle of the plane wave, and obtaining a 3D refractive index image from information of the measured 2D optical field by using an optical diffraction tomography or a filtered back projection algorithm.
Abstract:
Various example embodiments provide a computing device of an algorithm for reconstructing a three-dimensional (3D) image in consideration of multiple scattering and a method of the same. According to various example embodiments, the computing device may be configured to set a 3D refractive index based on a plurality of 2D images for a specimen and to reconstruct a 3D image for the specimen from the set refractive index using a modified Born expansion considering multiple scattering to converge a calculation result.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for identifying the predicted type of one or more microorganisms. In one aspect, a system comprises a phase-contrast microscope and a microorganism classification system. The phase-contrast microscope is configured to generate a three-dimensional quantitative phase image of one or more microorganisms. The microorganism classification system is configured to process the three-dimensional quantitative phase image using a neural network to generate a neural network output characterizing the microorganisms, and thereafter identify the predicted type of the microorganisms using the neural network output.
Abstract:
An optical detection system includes a sample portion accommodating a sample, a wave source emitting waves to the sample portion, an optical portion provided on a path of an output wave output from the sample portion, and comprising a first spatial light modulator that modulates part of the output wave to a first wave and a second spatial light modulator that modulates part of the output wave to a second wave, a lens portion focusing the first wave and the second wave output from the optical portion, and a detection portion detecting a focused wave that is focused by the lens portion, in which the first spatial light modulator and the second spatial light modulator modulate the output wave such that the first wave and the second wave have destructive interference with respect to the sample under an already known condition.
Abstract:
A method and apparatus for measuring 3D refractive-index tomograms using a wavefront shaper in ultra-high speed and high precision is provided. The method includes the steps of modifying at least one of an illumination angle and a wavefront pattern of an incident ray through the wavefront shaper and leading the modified incident ray to a sample, measuring a 2D optical field, which passes through the sample, through an interferometry along at least one or more of the incident rays, and obtaining 3D refractive-index tomograms through measured information of the 2D optical field.
Abstract:
An ultra-high-speed 3D refractive index tomography and structured illumination microscopy system using a wavefront shaper and a method using the same are provided. A method of using an ultra-high-speed 3D refractive index tomography and structured illumination microscopy system that utilizes a wavefront shaper includes adjusting an irradiation angle of a plane wave incident on a sample by using the wavefront shaper, measuring a 2D optical field, which passes through the sample, based on the irradiation angle of the plane wave, and obtaining a 3D refractive index image from information of the measured 2D optical field by using an optical diffraction tomography or a filtered back projection algorithm.
Abstract:
A method for forming a three-dimensional holographic image includes identifying a transmission matrix of a scattering material, calculating an incident wave-front corresponding to wave-front information for forming a three-dimensional holographic image, using the identified transmission matrix, and forming the calculated incident wave-front by controlling a wave-front control to modulate a light projected from a light source and forming a three-dimensional holographic image.
Abstract:
A method of generating a tomography image includes performing a depth scan on one spot on a surface of a subject using modulated light received from a spatial light modulator, obtaining depth scan data for each of a plurality of patterns of the spatial light modulator by repeating the depth scan on the spot for each of the plurality of patterns, forming a matrix R representing a vector space based on a correlation of signal values of the depth scan data for each of the plurality of patterns, performing a matrix decomposition on the matrix R, dividing the vector space into a noise subspace and a signal subspace based on a matrix obtained by the matrix decomposition, constructing a vector space based on either one or both of components of the signal subspace and components of the noise subspace, and generating a tomography image based on the reconstructed vector space.