Abstract:
The present disclosure relates to a nanocomposite cathode active material for a lithium secondary battery, a method for preparing same, and a lithium secondary battery including same. More particularly, the present disclosure relates to a nanocomposite cathode active material for a lithium secondary battery including: a core including LiMn2O4; and LiMn(PO3)3 distributed on the surface of the core.In accordance with the present disclosure, the time and cost for manufacturing a lithium secondary battery can be reduced and the manufactured lithium secondary battery has superior electrochemical properties.
Abstract translation:本发明涉及一种锂二次电池用纳米复合阴极活性物质及其制备方法,以及包含锂二次电池的锂二次电池。 更具体地,本公开涉及一种用于锂二次电池的纳米复合阴极活性材料,其包括:包含LiMn 2 O 4的核; 和分布在芯表面上的LiMn(PO3)3。 根据本公开,可以减少制造锂二次电池的时间和成本,并且制造的锂二次电池具有优异的电化学性能。
Abstract:
Disclosed is a method for carbon coating on lithium titanium oxide-based anode active material nanoparticles. The method includes (a) introducing a lithium precursor solution, a titanium precursor solution and a surface modifier solution into a reactor, and reacting the solutions under supercritical fluid conditions to prepare a solution including nanoparticles of an anode active material represented by Li4Ti5O12, (b) separating the anode active material nanoparticles from the reaction solution, and (c) calcining the anode active material nanoparticles to uniformly coat the surface of the nanoparticles with carbon. Further disclosed are carbon-coated lithium titanium oxide-based anode active material nanoparticles produced by the method. In the anode active material nanoparticles, lithium ions are transferred rapidly. In addition, the uniform carbon coating ensures high electrical conductivity, allowing the anode active material nanoparticles to have excellent electrochemical properties.
Abstract translation:公开了一种在基于二氧化钛的阳极活性材料纳米颗粒上涂覆碳的方法。 该方法包括(a)将锂前体溶液,钛前体溶液和表面改性剂溶液引入反应器中,并在超临界流体条件下使溶液反应以制备包含由Li 4 Ti 5 O 12表示的负极活性物质的纳米颗粒的溶液(b )从反应溶液中分离阳极活性材料纳米颗粒,和(c)煅烧阳极活性材料纳米颗粒以均匀地涂覆纳米颗粒的表面。 进一步公开了通过该方法制备的碳涂覆的基于二氧化钛的负极活性材料纳米颗粒。 在阳极活性材料纳米颗粒中,锂离子迅速转移。 此外,均匀的碳涂层确保高导电性,允许阳极活性材料纳米颗粒具有优异的电化学性质。
Abstract:
Provided is a furnace for a transmission mode X-ray diffractometer and a transmission mode X-ray diffractometer using the same. The furnace for a transmission mode X-ray diffractometer includes a sample heating unit disposed adjacent to a quartz capillary accommodating a sample to heat the sample, and a main body disposed to surround the quartz capillary and the sample heating unit and having an insulating function for allowing the heated sample to maintain a thermal equilibrium state.
Abstract:
Provided are a cathode active material coated with a fluorine-doped spinel-structured lithium metal manganese oxide, a lithium secondary battery including the same, and a method for preparing the same. The cathode active material has improved chemical stability and provides improved charge/discharge characteristics at elevated temperature (55-60° C.) and high rate. The cathode active material allows lithium ions to pass through the coating layer with ease and is chemically stable, and thus may be used effectively as a cathode active material for a high-power lithium secondary battery.
Abstract:
Disclosed is an electrolyte solution for a magnesium rechargeable battery with a high ionic conductivity and a wide electrochemical window compared to the conventional electrolyte solution. The electrolyte solution is prepared by dissolving magnesium metal into the ethereal solution using combinations of metal chloride catalysts. The electrolyte solution can be applied to fabricate magnesium rechargeable batteries and magnesium hybrid batteries with a markedly increased reversible capacity, rate capability, and cycle life compared to those batteries employing the conventional electrolyte solution. Also disclosed is a method for preparing the electrolyte.
Abstract:
Disclosed is a lithium manganese borate-based cathode active material. The cathode active material can be used to fabricate a lithium ion secondary battery that has advantages, such as high output capacity and cycle capacity, in comparison with lithium ion secondary batteries using conventional cathode active materials. Also disclosed are a lithium ion secondary battery including the cathode active material and a method for preparing the cathode active material.
Abstract:
A separation method of zirconium and hafnium is described which includes an extraction process of agitating an undiluted aqueous solution containing zirconium, hafnium, and sulfuric acid with a first stirring solution containing an acidic extractant to produce a first extract solution in which the hafnium is extracted by the acidic extractant; and a recovery process of agitating the first extract solution with a second stirring solution containing a citric acid solution to produce a citric acid solution after extraction in which zirconium is reverse-extracted from the first extract solution to the citric acid solution so as to recover zirconium contained in the first extract solution. The method may reduce the amount of extractant while greatly enhancing the separation effect of zirconium and hafnium, and increase zirconium recovery rate by more than 97% through an additional zirconium recovery process while reducing a hafnium content in zirconium by less than 50 ppm.
Abstract:
Disclosed is a method of producing a nanocomposite cathode active material for a lithium secondary battery, represented by the following formula: xLi2MnO3—(1−x)LiMO2 wherein M is Nia—Mnb—Coc, x is a decimal number from 0.1 to 0.9, and a, b and c are independently a decimal number from 0.05 to 0.9. The method includes mixing a lithium compound with a manganese compound to prepare Li2MnO3 as a first cathode active material, mixing a mixed solution of nickel sulfate/manganese sulfate/cobalt sulfate, a sodium hydroxide solution and aqueous ammonia to prepare a coprecipitated hydroxide represented by (Nia—Mnb—Coc)(OH)2 wherein a, b and c are as defined above, mixing the coprecipitated hydroxide with a lithium compound to prepare a second cathode active material represented by LiMO2 wherein M is as defined above, and mixing the first cathode active material with the second cathode active material. The nanocomposite cathode active material has improved electrochemical properties, such as stability, electrode capacity and cycle life in the high-voltage region.
Abstract:
Disclosed is a silicon-based anode active material for a lithium secondary battery. The silicon-based anode active material imparts high capacity and high power to the lithium secondary battery, can be used for a long time, and has good thermal stability. Also disclosed is a method for preparing the silicon-based anode active material. The method includes (A) binding metal oxide particles to the entire surface of silicon particles or portions thereof to form a silicon-metal oxide composite, (B) coating the surface of the silicon-metal oxide composite with a polymeric material to form a silicon-metal oxide-polymeric material composite, and (C) heat treating the silicon-metal oxide-polymeric material composite under an inert gas atmosphere to convert the coated polymeric material layer into a carbon coating layer.
Abstract:
Provided are a gel polymer electrolyte and a secondary battery including the same. More particularly, the gel polymer electrolyte includes a sodium cation-containing polymer from which sodium cations can be dissociated, and thus provides improved ion conductivity of sodium cations, thereby improving the electrochemical properties of a secondary battery.