NANOCOMPOSITE CATHODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERIES, METHOD FOR PREPARING THE SAME AND LITHIUM SECONDARY BATTERIES COMPRISING THE SAME
    11.
    发明申请
    NANOCOMPOSITE CATHODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERIES, METHOD FOR PREPARING THE SAME AND LITHIUM SECONDARY BATTERIES COMPRISING THE SAME 有权
    用于锂二次电池的纳米复合阴极活性材料,其制备方法和包含该锂二次电池的锂二次电池

    公开(公告)号:US20140099552A1

    公开(公告)日:2014-04-10

    申请号:US13738044

    申请日:2013-01-10

    CPC classification number: H01M4/505 H01M4/131 H01M4/1391 H01M4/364 H01M10/052

    Abstract: The present disclosure relates to a nanocomposite cathode active material for a lithium secondary battery, a method for preparing same, and a lithium secondary battery including same. More particularly, the present disclosure relates to a nanocomposite cathode active material for a lithium secondary battery including: a core including LiMn2O4; and LiMn(PO3)3 distributed on the surface of the core.In accordance with the present disclosure, the time and cost for manufacturing a lithium secondary battery can be reduced and the manufactured lithium secondary battery has superior electrochemical properties.

    Abstract translation: 本发明涉及一种锂二次电池用纳米复合阴极活性物质及其制备方法,以及包含锂二次电池的锂二次电池。 更具体地,本公开涉及一种用于锂二次电池的纳米复合阴极活性材料,其包括:包含LiMn 2 O 4的核; 和分布在芯表面上的LiMn(PO3)3。 根据本公开,可以减少制造锂二次电池的时间和成本,并且制造的锂二次电池具有优异的电化学性能。

    METHOD FOR COATING CARBON ON LITHIUM TITANIUM OXIDE-BASED ANODE ACTIVE MATERIAL NANOPARTICLES AND CARBON-COATED LITHIUM TITANIUM OXIDE-BASED ANODE ACTIVE MATERIAL NANOPARTICLES PRODUCED BY THE METHOD
    12.
    发明申请
    METHOD FOR COATING CARBON ON LITHIUM TITANIUM OXIDE-BASED ANODE ACTIVE MATERIAL NANOPARTICLES AND CARBON-COATED LITHIUM TITANIUM OXIDE-BASED ANODE ACTIVE MATERIAL NANOPARTICLES PRODUCED BY THE METHOD 有权
    在氧化钛基氧化物基阳极活性材料纳米颗粒和碳涂覆的氧化钛基氧化钛基阳极上涂覆碳的方法用该方法生产的活性材料纳米颗粒

    公开(公告)号:US20130302690A1

    公开(公告)日:2013-11-14

    申请号:US13662994

    申请日:2012-10-29

    Abstract: Disclosed is a method for carbon coating on lithium titanium oxide-based anode active material nanoparticles. The method includes (a) introducing a lithium precursor solution, a titanium precursor solution and a surface modifier solution into a reactor, and reacting the solutions under supercritical fluid conditions to prepare a solution including nanoparticles of an anode active material represented by Li4Ti5O12, (b) separating the anode active material nanoparticles from the reaction solution, and (c) calcining the anode active material nanoparticles to uniformly coat the surface of the nanoparticles with carbon. Further disclosed are carbon-coated lithium titanium oxide-based anode active material nanoparticles produced by the method. In the anode active material nanoparticles, lithium ions are transferred rapidly. In addition, the uniform carbon coating ensures high electrical conductivity, allowing the anode active material nanoparticles to have excellent electrochemical properties.

    Abstract translation: 公开了一种在基于二氧化钛的阳极活性材料纳米颗粒上涂覆碳的方法。 该方法包括(a)将锂前体溶液,钛前体溶液和表面改性剂溶液引入反应器中,并在超临界流体条件下使溶液反应以制备包含由Li 4 Ti 5 O 12表示的负极活性物质的纳米颗粒的溶液(b )从反应溶液中分离阳极活性材料纳米颗粒,和(c)煅烧阳极活性材料纳米颗粒以均匀地涂覆纳米颗粒的表面。 进一步公开了通过该方法制备的碳涂覆的基于二氧化钛的负极活性材料纳米颗粒。 在阳极活性材料纳米颗粒中,锂离子迅速转移。 此外,均匀的碳涂层确保高导电性,允许阳极活性材料纳米颗粒具有优异的电化学性质。

    CATHODE ACTIVE MATERIAL COATED WITH FLUORINE-DOPED LITHIUM METAL MANGANESE OXIDE AND LITHIUM-ION SECONDARY BATTERY COMPRISING THE SAME
    14.
    发明申请
    CATHODE ACTIVE MATERIAL COATED WITH FLUORINE-DOPED LITHIUM METAL MANGANESE OXIDE AND LITHIUM-ION SECONDARY BATTERY COMPRISING THE SAME 有权
    阴极活性材料涂覆有氟化锂金属锰氧化物和包含该氧化物的锂离子二次电池

    公开(公告)号:US20160329563A1

    公开(公告)日:2016-11-10

    申请号:US14842752

    申请日:2015-09-01

    Abstract: Provided are a cathode active material coated with a fluorine-doped spinel-structured lithium metal manganese oxide, a lithium secondary battery including the same, and a method for preparing the same. The cathode active material has improved chemical stability and provides improved charge/discharge characteristics at elevated temperature (55-60° C.) and high rate. The cathode active material allows lithium ions to pass through the coating layer with ease and is chemically stable, and thus may be used effectively as a cathode active material for a high-power lithium secondary battery.

    Abstract translation: 提供涂覆有掺杂氟的尖晶石结构的锂金属锰氧化物的正极活性材料,包括其的锂二次电池及其制备方法。 阴极活性材料具有改善的化学稳定性,并且在高温(55-60℃)和高速率下提供改善的充放电特性。 阴极活性材料容易使锂离子通过涂层,并且化学稳定,因此可以有效地用作高功率锂二次电池的阴极活性材料。

    ELECTROLYTE FOR MAGNESIUM RECHARGEABLE BATTERY AND PREPARATION METHOD THEREOF
    15.
    发明申请
    ELECTROLYTE FOR MAGNESIUM RECHARGEABLE BATTERY AND PREPARATION METHOD THEREOF 有权
    用于镁可充电电池的电解液及其制备方法

    公开(公告)号:US20160028117A1

    公开(公告)日:2016-01-28

    申请号:US14633807

    申请日:2015-02-27

    Abstract: Disclosed is an electrolyte solution for a magnesium rechargeable battery with a high ionic conductivity and a wide electrochemical window compared to the conventional electrolyte solution. The electrolyte solution is prepared by dissolving magnesium metal into the ethereal solution using combinations of metal chloride catalysts. The electrolyte solution can be applied to fabricate magnesium rechargeable batteries and magnesium hybrid batteries with a markedly increased reversible capacity, rate capability, and cycle life compared to those batteries employing the conventional electrolyte solution. Also disclosed is a method for preparing the electrolyte.

    Abstract translation: 公开了与常规电解质溶液相比,具有高离子电导率和宽电化学窗口的镁可充电电池的电解液。 通过使用金属氯化物催化剂的组合将镁金属溶解在醚溶液中来制备电解质溶液。 与使用常规电解质溶液的电池相比,电解质溶液可用于制造镁可充电电池和镁混合电池,其具有显着增加的可逆容量,速率能力和循环寿命。 还公开了一种制备电解质的方法。

    SEPARATION METHOD OF ZIRCONIUM AND HAFNIUM BY SOLVENT EXTRACTION PROCESS
    17.
    发明申请
    SEPARATION METHOD OF ZIRCONIUM AND HAFNIUM BY SOLVENT EXTRACTION PROCESS 失效
    通过溶剂萃取方法分离锆和铪的方法

    公开(公告)号:US20140219891A1

    公开(公告)日:2014-08-07

    申请号:US13852143

    申请日:2013-03-28

    CPC classification number: C22B3/0005 Y02P10/234

    Abstract: A separation method of zirconium and hafnium is described which includes an extraction process of agitating an undiluted aqueous solution containing zirconium, hafnium, and sulfuric acid with a first stirring solution containing an acidic extractant to produce a first extract solution in which the hafnium is extracted by the acidic extractant; and a recovery process of agitating the first extract solution with a second stirring solution containing a citric acid solution to produce a citric acid solution after extraction in which zirconium is reverse-extracted from the first extract solution to the citric acid solution so as to recover zirconium contained in the first extract solution. The method may reduce the amount of extractant while greatly enhancing the separation effect of zirconium and hafnium, and increase zirconium recovery rate by more than 97% through an additional zirconium recovery process while reducing a hafnium content in zirconium by less than 50 ppm.

    Abstract translation: 描述了锆和铪的分离方法,其包括使用含有酸性萃取剂的第一搅拌溶液搅拌未稀释的含有锆,铪和硫酸的水溶液的提取方法,以产生其中铪被提取的第一提取溶液 酸性提取剂; 以及回收方法,用含有柠檬酸溶液的第二搅拌溶液搅拌第一提取溶液,以在提取后产生柠檬酸溶液,其中将锆从第一提取溶液反萃取至柠檬酸溶液,以回收锆 包含在第一提取物溶液中。 该方法可以减少萃取剂的量,同时大大提高锆和铪的分离效果,并且通过另外的锆回收方法将锆回收率提高97%以上,同时将锆中的铪含量降低到低于50ppm。

    METHOD OF PRODUCING NANOCOMPOSITE CATHODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY
    18.
    发明申请
    METHOD OF PRODUCING NANOCOMPOSITE CATHODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY 审中-公开
    生产用于锂二次电池的纳米复合材料阴极活性材料的方法

    公开(公告)号:US20130299735A1

    公开(公告)日:2013-11-14

    申请号:US13853141

    申请日:2013-03-29

    Abstract: Disclosed is a method of producing a nanocomposite cathode active material for a lithium secondary battery, represented by the following formula: xLi2MnO3—(1−x)LiMO2 wherein M is Nia—Mnb—Coc, x is a decimal number from 0.1 to 0.9, and a, b and c are independently a decimal number from 0.05 to 0.9. The method includes mixing a lithium compound with a manganese compound to prepare Li2MnO3 as a first cathode active material, mixing a mixed solution of nickel sulfate/manganese sulfate/cobalt sulfate, a sodium hydroxide solution and aqueous ammonia to prepare a coprecipitated hydroxide represented by (Nia—Mnb—Coc)(OH)2 wherein a, b and c are as defined above, mixing the coprecipitated hydroxide with a lithium compound to prepare a second cathode active material represented by LiMO2 wherein M is as defined above, and mixing the first cathode active material with the second cathode active material. The nanocomposite cathode active material has improved electrochemical properties, such as stability, electrode capacity and cycle life in the high-voltage region.

    Abstract translation: 公开了一种制备用于锂二次电池的纳米复合阴极活性材料的方法,由下式表示:xLi2MnO3-(1-x)LiMO2其中M是Nia-Mnb-Coc,x是0.1至0.9的十进制数, 和a,b和c独立地为0.05至0.9的十进制数。 该方法包括将锂化合物与锰化合物混合以制备Li2MnO3作为第一正极活性物质,混合硫酸镍/硫酸锰/硫酸钴,氢氧化钠溶液和氨水的混合溶液,制备由( Nia-Mnb-Coc)(OH)2,其中a,b和c如上所定义,将共沉淀的氢氧化物与锂化合物混合以制备由LiMO2表示的第二正极活性物质,其中M如上所定义, 阴极活性材料与第二阴极活性材料。 纳米复合阴极活性材料具有改善的电化学性能,例如高压区域的稳定性,电极容量和循环寿命。

Patent Agency Ranking