Abstract:
The invention provides an index of line balance method for maintaining optimum queued quantities of products at a manufacturing step and over an entire manufacturing line. The method begins by: first, assigning a daily standard move of product (Std Move) which should be produced in a manufacturing line. Second, the standard WIP StdWIP is calculated for each manufacturing stage i by multiplying the theoretical cycle time C/T of each stage by the daily standard move StdMove; (i.e., StdWIP=CT*StdMove). Third, the difference Di between the current WIP CWi and standard WIP StdWIP at every stage i. (Di=Cwi-Swi, ) is calculated. Fourth, the cumulative difference CDi between current WIP Cwi and standard WIP StdWIP of every stage i from stage i to stage n is calculated. ##EQU1## Fifth, the index of line balance BIi is calculated by dividing the sum of all positive CDi from stage i to stage n by the absolute value of the sum of all negative CDi from stage i to stage n. Next, the index of line balance BIi for each stage i is plotted as a line chart for each stage i. Lastly, additional production resources (e.g., tools) are allocated to the stages that have an index of line balance BIi greater than 1.2 and production resources are reduced to the stages that have an index of line balance BIi less than 0.80. The method reduces WIP, cycle time and costs by better allocating manufacturing resources.
Abstract:
A method of taking a sliding exercise, which is taken on a training machine and the training machine has two pedals, includes the steps of: a) putting feet on the pedals; and b) reciprocating the feet in opposite directions or in the same direction. The feet respectively move in a curved path on a substantial horizontal plane. Therefore, the use's feet reciprocate forward/rearward and split to train user's muscles.
Abstract:
In some aspects, a method is provided for abating perfluorocarbons (PFCs) in a gaseous waste abatement system having a pre-installed controlled decomposition oxidation (CDO) thermal reaction chamber. The method that includes (1) providing a catalyst bed within the CDO thermal reaction chamber; and (2) introducing a gaseous waste stream into the CDO thermal reaction chamber so as to expose the gaseous waste stream to the catalyst bed. Numerous other aspects are provided.
Abstract:
A new data processing and display method for use in interactive manufacturing process management is achieved. A first variable value, such as WIP, for a manufacturing stage is uploaded from a database and is subtracted from a first target value to obtain a first variable variance. A first variable variance bar is displayed above a stage axis on a graphical display device and is non-filled if the first variable variance is positive and is filled if the first variable variance is negative. A second variable value, such as production moves, is uploaded and is subtracted from a second target value to obtain a second variable variance. A second variable value bar is displayed below the stage axis on the graphical display device and is non-filled. A second variable variance bar is displayed below the second variable value bar on the graphical display device if the second variable variance is positive.
Abstract:
Within both a stocker apparatus and a method for operating the stocker apparatus there is employed: (1) a minimum of six input/output ports; (2) an array of storage locations for storing an array of work in process (WIP) product units; and (3) a random access transportation means for transporting a work in process (WIP) product unit at least bidirectionally between the minimum of six input/output ports and a storage location within the array of storage locations. Within the stocker apparatus and the method, the minimum of six input/output ports provides for more efficient operation of the stocker apparatus.
Abstract:
Within both a stocker apparatus and a method for operating the stocker apparatus there is employed, in addition to: (1) a minimum of one input/output port; (2) an array of storage locations for storing an array of work in process (WIP) product units; and (3) a random access transportation means for transporting a work in process (WIP) product unit at least bidirectionally between the minimum of one input/output port and a storage location within the array of storage locations; (4) a controller for controlling the random access transportation means. Within the stocker apparatus and the method, the controller is programmed such that upon unavailability of the minimum of one input/output port and upon concurrent receipt of a request to retrieve a work in process (WIP) product unit stored within the array of storage locations to reposition the requested work in process (WIP) product unit to a designated storage location within the array of storage locations where it may be manually retrieved.
Abstract:
A system and a method are provided employing the concept of Budget Queue Time to define the priority of lots while distinguishing clearly between the controllable an uncontrollable portions of the remaining production time needed and to make the priority setting further meet the actual status. Two indices X and P are used concurrently to define the priority of a lot. X is the index of the delivery week which indicates the week in which the lot must be out of the fabrication process and P denotes the temporary priority according to the Budget Queue Time, but X is the dominant one of the two indices X and P. Use is made of the concept of remaining Budget Queue Time instead of traditional queue time of current stage for dispatching to reduce the variance of cycle time variance.