Abstract:
A fire detector has at least two sensor units for monitoring a confined space for the occurrence of a fire. A first fire parameter is monitored according to the scattered light method, using a first sensor unit located at or in the vicinity of the ceiling. At least one second sensor unit of the fire detector, which emits at least two highly focused light beams towards the floor of the confined space, monitors a second fire parameter according to the extinction method.
Abstract:
The disclosure relates to a connecting assembly, more particularly for being used in the driveline of a motor vehicle. The connecting assembly comprises a housing and a driving gear. The housing comprises a first housing part with a first flange portion and a second housing part with a second flange portion. The driving gear comprises a receiving portion for receiving the housing and a supporting face which laterally delimits the receiving portion, wherein the first flange portion of the first housing part is axially arranged between the supporting face of the driving gear and the second flange portion of the second housing part, and wherein the second flange portion is welded to the driving gear. A method of producing a connecting assembly is also disclosed.
Abstract:
A smoke alarm has a base element with a flat mounting surface, a light emitter that is attached to the mounting surface and that is configured to issue an illuminating light, and a light receiver that is attached to the mounting surface next to the light emitter and that is configured to receive a measurement light that results from a back-scattering of the illumination light at a measurement object located in a detection space. A data processing device is coupled to an output of the light receiver and configured to evaluate temporal changes of an output signal issued by the light receiver. Also, there is provided a method for checking the functional capability of the smoke alarm.
Abstract:
A flashlight for alarm systems includes a light source containing at least one light emitting diode and a circuit which controls said light source. The circuit has a feed supply, a current converter, and flash control device. The current converter, the light source, and the flash control device are connected in series. The current converter includes a control unit, an inductor, an induction stop, and a resistor which are connected in series. The flash control device includes at least one switch for actuating the light source and a microprocessor for controlling the at least one switch.
Abstract:
An axial setting device includes two discs which are centered on a common axis. One is axially supported and the other one is axially displaceable, and at least one is rotatingly drivable. The two discs on their end faces, each have a plurality of circumferential ball grooves. The ball grooves each comprise a depth which decreases in the same direction, and each pair of opposed ball grooves accommodates a ball. At least the ball grooves of one of the two discs, starting from the region of the greatest groove depth, comprise a first groove portion with a greater pitch and an adjoining second groove portion with a smaller pitch, wherein the first groove portion extends over a smaller circular-arch-shaped portion than the second groove portion.
Abstract:
A friction coupling assembly includes: a ball ramp assembly (2) with two coaxial discs (6, 7), wherein the faces (8, 9) of the two discs (6, 7) each have ball grooves (12, 13) of increasing depth, wherein pairs of opposed ball grooves hold balls to axially support the two discs (6, 7); a plate package (3) arranged coaxially relative to the discs (6, 7) and having outer plates (24) for fixing to a coupling carrier (40) and inner plates (25) for fixing to a coupling hub (56); and a plate spring (5) for introducing force into the plate package (3), the plate spring (5) is arranged coaxially relative to the discs (6, 7), is axially pretensioned and, functionally, is arranged in series with the plate package (3).
Abstract:
A coupling apparatus (1) having a mains connection (2) for connection to a low-voltage mains power supply system, and having an appliance connection (3) for connection of any appliance for transmitting and/or receiving an RF signal has a voltage converter (5) and a high-pass filter (6.1, 6.2). The voltage converter converts the mains voltage which is present at the mains connection to a very-low voltage, which is suitable for supplying the appliance connected to the appliance connection. Inductances (4.3 to 4.6) of suitable size are interposed in the appropriate connecting lines as low-pass filters for decoupling the RF signal path from the supply signal path, and for suppressing undesirable, radio-frequency signal components in the supply voltages. RF signals which are transmitted or are to be transmitted via the low-voltage mains power supply system are coupled from the mains connection via the high-pass filter to the appliance connection, and from the appliance connection to the mains connection. In order to supply further appliances with mains voltage, the coupling apparatus has an additional appliance connection (7), which is likewise low-pass-filtered by means of inductances (4.3, 4.4).
Abstract:
A detector device for detecting the presence of airborne particles such as smoke includes a light source, an optical bridge, a measurement path, a reference path, a measurement receiver and a reference receiver. The optical bridge, in addition to the light source and the measurement and reference receivers, are the only optical elements of the detector device. The optical bridge includes two circular apertures arranged downstream of the light source along the radiation path. The light source is arranged in a chamber having an air reservoir, whose surface area is substantially greater than that of the light source. A temperature drift curve is determined by heating the light source and storing the detector signal at different temperatures.
Abstract:
A gliding sports apparatus, which is preferably controllable by upper body and/or arms and/or hands and/or fingers, extends from a leading edge to a trailing edge in an intended direction of overflow when it is fastened to a user. The gliding sports apparatus comprises at least two shoulder ribs which extend substantially from the leading edge to the trailing edge, and wherein each of the shoulder ribs is connectable fixedly to an upper arm of the user but is rotatable about the axis of the upper arm, two hand ribs which extend substantially from the leading edge to the trailing edge, and wherein each of the hand ribs is connectable fixedly to a hand of the user, a back airfoil which is formed between the two shoulder ribs, and two arm airfoils, which are formed in each case between a shoulder rib and a hand rib.
Abstract:
The disclosure relates to a venting assembly for a unit with components running in a lubricant. The venting assembly comprises a housing part, a rotating component which, by a rolling contact bearing, is rotatably supported around an axis of rotation relative to the housing part, as well as a venting channel for venting the assembly, wherein an inner opening of the venting channel is arranged so as to axially adjoin the rolling contact bearing, and wherein, in an axial view, the opening of the venting channel at least partially covers the rolling contact bearing. Furthermore, the disclosure relates to a transmission assembly with such a venting assembly.