摘要:
An origination device (e.g., a base station) dual encodes a first set of data (1) according to a first set of encoding parameters corresponding to channel conditions associated with a first communication link, and (2) according to a second set of encoding parameters corresponding to channel conditions associated with a second communication link. The dual-encoded first set of data is transmitted to a signal forwarding device. The signal forwarding device decodes the dual-encoded first set of data, using decoding parameters that correspond to the second set of encoding parameters, to generate a single-encoded first set of data that is encoded according to the first set of encoding parameters. The signal forwarding device transmits a “single-encoded forwarded signal” to the destination device. The destination device decodes the single-encoded forwarded signal using decoding parameters that correspond to the first set of encoding parameters, which yields the first set of data.
摘要:
The methods and systems discussed herein describe a first wireless communication device forwarding a first reservation signal, which identifies one or more time-slots that have been reserved by a second wireless communication device, to avoid “merging collisions.” In some examples, the first wireless communication device also receives a second reservation signal from a third wireless communication device, which identifies at least one time-slot that is the same as a time-slot that was identified in the first reservation signal. The first wireless communication device transmits a forwarded reservation signal that identifies the time-slots reserved by whichever of the second wireless communication device and the third wireless communication device has higher priority data to transmit. In other examples, the first wireless communication device transmits the forwarded reservation signal if a received power value of the first reservation signal is within a pre-defined received power range.
摘要:
In a communication system having a plurality of user equipment (UE) devices that are operating in a contention based mode for device-to-device (D2D) communication, each UE device transmits a preferred transmission indicator when a condition for preferred transmission is met at the UE device. If a UE device receives a preferred transmission indicator, the UE device delays transmission of a D2D scheduling assignment (SA) to contend for communication resources for D2D communication. The length of the delay can be based on a number of preferred transmission indicators that are received. The preferred transmission indicator is based on a buffer size in one example.
摘要:
A transmitting user equipment (UE) device selects between a cellular communication link and a device-to-device (D2D) communication link for transmission for data from the transmitting UE device to a receiving UE device. Based on cellular channel characteristic information and D2D channel characteristic information, the UE device selects between the cellular communication link and the D2D communication link. The cellular channel characteristic information is indicative of at least a portion of a cellular communication link through a base station (eNB) and the D2D channel characteristic information is indicative of the D2D communication link between the transmitting UE device and the receiving UE device.
摘要:
A serving base station allocates communication resources to be used by an aerial vehicle user equipment device (AV-UE) for uplink data transmissions. A neighboring base station is informed, via an air interface, of the communication resources that were allocated to the AV-UE. In some examples, the AV-UE retransmits scheduling assignment information, received from the serving base station, to the neighboring base station. In still other examples, the AV-UE transmits a sounding reference signal (SRS) to the neighboring base station. The neighboring base station can decode the retransmitted scheduling assignment information and/or the SRS to obtain information regarding the communication resources that have been allocated to the AV-UE for uplink data transmissions. The neighboring base station mitigates interference from the uplink data transmissions sent by the AV-UE.
摘要:
A signal forwarding device forwards signals between a user equipment (UE) device and a base station using a partial decode and forward (PDF) signal forwarding scheme where an incoming signal is demodulated and forwarded to a destination as a forwarded signal without decoding the incoming signal. The signal forwarding device transmits, to the base station, channel information regarding the UE-SFD channel between the UE device and the signal forwarding device. A base station (BS) scheduler determines the coding rate to be used by the UE device at least partially based on the channel information. The base station transmits coding rate information indicative of the coding rate to the signal forwarding device. A signal forwarding device (SFD) scheduler schedules communication resources for use by the UE device at least partially based on the coding rate information.
摘要:
A method of managing data obtained in a borehole is provided. The method includes monitoring a characteristic with at least one sensor and obtaining raw data therefrom; indexing the raw data with the at least one sensor; recording the indexed data with the at least one sensor; forming a data packet with the at least one sensor, the data packet including at least a portion of the indexed data and index information; and transmitting the data packet in a predetermined segment of a communication protocol.
摘要:
Systems and methods for transparent handovers of mobile relays on high-speed vehicles. In an embodiment, a base station of a wireless communications network transmits identification data to a mobile relay on a high-speed vehicle. The identification data identifies base stations which are configured for transparent handovers. The network also receives data indicative of a scheduled path of the high-speed vehicle, which it uses to select a target base station for communication with the mobile relay. Once the target base station has been selected, the network begins servicing the mobile relay from the second base station, without requiring any measurement values from the mobile relay and without handover signaling.
摘要:
Systems and methods for configuring cross radio access technology minimization of drive testing are presented. In one embodiment, the use of circuit switched fallback is used as a trigger for switching minimization of drive test configurations on a user equipment. After the user equipment returns from circuit switched fallback, the minimization of drive test parameters are reported to the base station.
摘要:
A portable communication device transmits, to a communication network, a radio configuration (RC) request indicator requesting assignment of a power saving radio configuration for reverse link transmissions. The power saving radio configuration is one a plurality of radio configurations including the power saving radio configuration and at least one other radio configuration defined by a communication standard different than the communication standard defining the power saving radio configuration. Average power consumption at the portable device when the portable communication device participates in the call using the power saving radio configuration is less than if the other radio configuration is used for the call.