Abstract:
A columnar light emitting device is provided. The columnar light emitting device includes an upper transparent electrode layer, a lower transparent electrode layer disposed to be separated from the upper transparent electrode layer, a columnar light emitting structure pattern-formed between the upper transparent electrode layer and the lower transparent electrode layer, a fluorescent part formed between a plurality of the columnar light emitting structures, a P-type electrode pad formed on the upper transparent electrode layer, and an N-type electrode pad formed under the lower transparent electrode layer. The columnar light emitting structure includes a U-GaN layer, an N-type semiconductor layer, an emission layer, and a P-type semiconductor layer.
Abstract:
A light-emitting device and a display device using the same are disclosed. The light-emitting device improves the reliability of a process of disposing light-emitting devices. The light-emitting device is configured to ensure electrical connections even if the light-emitting device is inverted while being disposed on a substrate. The light-emitting device includes an n-type semiconductor layer and a p-type semiconductor layer. N-type electrodes and p-type electrodes are disposed on both sides of top and bottom surfaces of the light-emitting device. Contact holes are provided to electrically connect one of the n-type electrodes to the n-type semiconductor layer and one of the p-type electrodes to the p-type semiconductor layer. When the light-emitting device is inverted while being disposed on a substrate, the light-emitting device operates ordinarily, thereby reducing the defect rate of a display device.
Abstract:
There is provided a display device. The display device includes a plurality of semiconductor elements disposed on a substrate; a plurality of LEDs disposed on the plurality of semiconductor elements and electrically connected to the plurality of semiconductor elements, respectively; and a plurality of reflectors disposed above the semiconductor elements and each located between every two of the LEDs. The plurality of LEDs may include a plurality of respective light-emitting layers disposed on the plurality of semiconductor elements, and a common electrode disposed on the plurality of light-emitting layers. The reflectors are disposed between the LEDs, so that light emitted from LEDs does not travel toward the side portions of the LEDs but toward the above of the substrate, thereby improving the light extraction efficiency and suppressing color mixture.