Abstract:
The present invention relates to a method and apparatus for measuring interference in a wireless communication system. User equipment (UE) receives a common reference signal (CRS) from a first domain having the same cell identity and a channel state information (CSI) reference signal (RS) from a second domain including a configuration of the CSI RS designated by the UE. The UE measures interference for the second domain on the basis of the received CRS and CSI RS.
Abstract:
The present invention provides a method for reference signal dropping and an apparatus for the method. A method for CSI-RS dropping comprises receiving first CSI-RS configuration information including sub-frame information which is transmission resource information of a first CSI-RS and through which the first CSI-RS information is transmitted and resource element information which contains the first CSI-RS; receiving second CSI-RS configuration information including sub-frame information which is transmission resource information of a second CSI-RS and through which the second CSI-RS is transmitted and resource element information which contains the second CSI-RS; and in case transmission resources of the first CSI-RS according to the first CSI-RS configuration and transmission resources of the second CSI-RS according to the second CSI-RS configuration overlap with each other, determining according to a priority order whether a CSI-RS received from the overlapping transmission resources corresponds to the first or the second CSI-RS.
Abstract:
Provided are a method and an apparatus for measuring channel quality indicator in a wireless communication system. User equipment receives, from a base station, at least one of a cell-specific reference signal (CRS) which is cell-specifically transmitted and a channel state information reference signal (CSI RS). The user equipment also receives, from the base station, a demodulation reference signal (DMRS) which is user equipment-specifically transmitted in an enhanced physical downlink control channel (e-PDCCH) region constituted in a physical downlink shared channel (PDSCH) region. The terminal measures the CQI based on either at least one of the CRS and the CSI RS or the DMRS.
Abstract:
Disclosed are a method and a device for allocating a search space of a control channel in a subframe. A method for monitoring downlink control information comprises the steps of: acquiring first control information on a first enhanced-physical downlink control channel (e-PDCCH) by monitoring a common search space in a first slot of a subframe; and acquiring second control information on a second e-PDCCH by monitoring a user equipment (UE)-specific search space in a second slot of the subframe. Thus, a terminal can obtain cell-specific information through an e-PDCCH even without a legacy physical downlink control channel (PDCCH).
Abstract:
The present invention relates to a method and device for measuring interference in a wireless communication system. User equipment (UE) receives interference measuring indicators form a base station and measures interference based on the interference-measuring indicators by using all or some resource elements (RE) that correspond to zero-power channel state information (CSI) reference signal (RS) configurations.
Abstract:
Provided are a method and a device for searching for a control channel of a terminal in a multi-node system. Said method comprises the steps of: receiving user equipment specific reference signal (URS) setting information for setting URSs in a first area and a second area which are divided according to a resource allocation method, wherein said first area is a non-interleaving area in which channels are allocated to local radio resources, and said second area is an interleaving area in which channels are allocated to distributed radio resources; and searching for a control channel in said first area, wherein said user equipment attempts to detect said control channel by using each of a plurality of candidate URSs which can be set by said URS setting information.
Abstract:
A method is provided for receiving aperiodic channel state information (CSI). A base station (BS) transmits, to a user equipment (UE), an uplink downlink control information (DCI) format. The BS receives, from the UE, aperiodic CSI through a physical uplink shared channel (PUSCH) if the BS triggers an aperiodic CSI report using a CSI request field included in the uplink DCI format. The CSI request field is either a 1-bit field or a multi-bit field. When the UE is configured with only one cell, the 1-bit field is included in the uplink DCI. When the UE is configured with more than one channel state information-reference signal (CSI-RS), the multi-bit field is included in the uplink DCI.
Abstract:
Provided are a method and an apparatus for measuring channel quality indicator in a wireless communication system. User equipment receives, from a base station, at least one of a cell-specific reference signal (CRS) which is cell-specifically transmitted and a channel state information reference signal (CSI RS). The user equipment also receives, from the base station, a demodulation reference signal (DMRS) which is user equipment-specifically transmitted in an enhanced physical downlink control channel (e-PDCCH) region constituted in a physical downlink shared channel (PDSCH) region. The terminal measures the CQI based on either at least one of the CRS and the CSI RS or the DMRS.
Abstract:
Provided are a method and apparatus for measuring interference in a wireless communication system. A terminal receives, from a base station, a zero-power channel state information (CSI) reference signal (RS) indicator that indicates whether or not to estimate interference using a zero-power CSI RS signal, and, according to the zero-power CSI RS indicator, measures interference on the basis of the zero-power CSI RS.
Abstract:
Provided are a method and apparatus for channel information feedback in a wireless communication system. A terminal may receive CSI-RS configuration information from a base station and generate channel information using a codebook determined in accordance with the number of CSI-RS patterns set by the CSI-RS configuration information. The base station may transmit CSI-RS patterns allocated to a plurality of nodes through a method for expanding a field within one control message.