Abstract:
A method and apparatus for transmitting ACK/NACK (Acknowledgement/Negative-ACK) state information in a wireless communication system. The method includes receiving, by a user equipment (UE), multiple transmission blocks through multiple downlink component carriers from a base station (BS); and transmitting, by the UE, multiple transmission block ACK/NACK state information through a single uplink component carrier to the BS. The multiple transmission block ACK/NACK state information indicates a number of ACK responses among ACK/NACK responses corresponding to each of the multiple transmission blocks.
Abstract:
A method for wireless communication supporting uplink and downlink multi carriers Includes performing initial access through one of at least two downlink component carriers among multiple downlink component carriers including the at least two downlink component carriers through which the user equipment is allowed to perform the initial access; and transmitting via an uplink component carrier allocated to the user equipment by using a carrier identifier, wherein the carrier identifier is applied to the uplink component carrier and is obtained from the downlink component carrier through which the initial access is performed, and wherein the system pre-defines one-to-one correspondence between multiple downlink component carriers and multiple uplink component carriers, and wherein the downlink component carrier through which the initial access is performed and the uplink component carriers allocated to the user equipment do not match the one-to-one correspondence pre-defined by the system.
Abstract:
A method for transmitting a downlink control channel in a mobile communication system and a method for mapping the control channel to physical resources using a block interleaver are provided. In order to transmit a downlink control channel in a mobile communication system, information bits are modulated to generate one or more modulation symbols according to a specific modulation scheme, the modulation symbols are interleaved using a block interleaver, and the interleaved modulated symbols are mapped to resource elements allocated for transmission of at least one control channel in a subframe, thereby transmitting the at least one control channel.
Abstract:
According to one embodiment, a method of allocating a radio resource for a relay station includes: transmitting configuration information through a higher layer signal, the configuration information including information regarding an OFDM symbol at which a relay zone begins; allocating the relay zone to the relay station in a subframe based on the configuration information; and transmitting a relay control channel to the relay station in the relay zone. The subframe includes OFDM symbols in a time domain and subcarriers in a frequency domain. The relay zone includes a subset of the OFDM symbols in the time domain and a portion of the subcarriers in the frequency domain. The configuration information indicates an OFDM symbol from among a second OFDM symbol, a third OFDM symbol and a fourth OFDM symbol. The relay control channel is transmitted from the fourth OFDM symbol of the subframe.
Abstract:
A method of generating Acknowledgement/Negative Acknowledgement (ACK/NACK) information by a user equipment (UE) in a wireless communication system is discussed. The method includes receiving, by the UE from a base station (BS), a plurality of codewords through a plurality of downlink frequency bands related to a plurality of downlink carriers, wherein the UE is configured with a 1-codeword mode or a 2-codeword mode for each of the plurality of downlink frequency bands independently, and wherein a number of supported codewords is one for the 1-codeword mode or two for the 2-codeword mode; determining, by the UE, a total number of ACK/NACK bits, wherein the total number of ACK/NACK bits is determined based on a total number of the plurality of downlink carriers and the number of supported codewords; and generating, by the UE, a sequence of the ACK/NACK bits based on the total number of the ACK/NACK bits.
Abstract:
A method of generating Acknowledgement/Negative Acknowledgement (ACK/NACK) information by a user equipment (UE) in a wireless communication system supporting carrier aggregation, the method including receiving, by the UE from a base station (BS), a plurality of codewords through a plurality of downlink frequency bands corresponding to a plurality of downlink carriers, wherein each of the plurality of downlink frequency bands operates in a 1-codeword mode or a 2-codeword mode, and a number of supported codewords according to the 1-codeword mode or the 2-codeword mode is independently configured for each of the downlink frequency bands, determining, by the UE, a total number of ACK/NACK bits, wherein the total number of ACK/NACK bits is determined based on a total number of the plurality of downlink carriers and the number of supported codewords according to the 1-codeword mode or the 2-codeword mode and generating, by the UE, a sequence of the ACK/NACK bits according to the total number of the ACK/NACK bits.
Abstract:
A method is described for receiving a physical signal by a communication apparatus in a wireless communication system supporting carrier aggregation of a first component carrier and a second component carrier. The communication apparatus receives a physical downlink control channel (PDCCH) signal on the first component carrier. The communication apparatus also receives a physical downlink shared channel (PDSCH) signal corresponding to the PDCCH signal on the second component carrier. The first component carrier is different from the second component carrier. A starting orthogonal frequency division multiplexing (OFDM) symbol for receiving the PDSCH signal is determined according to information received via a radio resource control (RRC) signal.
Abstract:
A method for detecting control information in a wireless communication system is provided. The method includes checking a cyclic redundancy check (CRC) error by monitoring control channels, determining whether a value of an error check field is equal to a specific value, and, if the value of the error check field is equal to a specific value, detecting the control information on the control channel.
Abstract:
According to one embodiment, a method of operating carriers at a user equipment in a wireless communication system includes: configuring, by the user equipment, a plurality of carriers including a first carrier and a second carrier; receiving control information on an activation of the second carrier among the plurality of carriers; activating the second carrier; and deactivating the activated second carrier after a certain amount of time. The certain amount of time is based on a valid time of the activation of the second carrier. The valid time is defined by a number of frames.
Abstract:
The present invention relates to a method for generating an uplink reference signal in a system supporting plural uplink-access transmission modes. The method comprises: a step for transmitting the reference signal configuration information about the configuration of a reference signal from a base station to a user device through an uplink grant PDCCH (Physical Downlink Control Channel), and a step for receiving from the user device a sub-frame including the reference signal that is generated based on the reference signal configuration information. The reference signal configuration information is prepared for plural uplink access transmission modes and includes a cyclic shift value for the sequence of the reference signal. The reference signal is supposed to be transmitted to an uplink, and the user device is set up to be operated in the uplink-access transmission mode that corresponding to the reference signal configuration information.