Abstract:
A method for filtering a gas includes delivering a gas into a compartment of a gas filter assembly; applying a partial vacuum to the gas filter assembly so that the partial vacuum assists in drawing the gas through a porous filter body of the gas filter assembly that is at least partially disposed within the compartment of the gas filter assembly; and regulating the application of the partial vacuum based on a pressure reading of the gas upstream of the gas filter assembly.
Abstract:
A method for filtering a gas includes sparging a gas through a liquid within a compartment of a container. In one embodiment the container can comprise a flexible bag. The sparged gas is passed from the container through a gas filter of a filter assembly. A partial vacuum is applied to the gas filter so that the partial vacuum assists in drawing the gas through the gas filter.
Abstract:
A sample purification system includes a mixing zone; a settling zone in fluid communication with the mixing zone; a mixer element disposed in the mixing zone, the mixer element being configured to mix immiscible liquids to form a mixture; and a first acoustic wave settler configured to emit an acoustic wave into the mixture.
Abstract:
A system for performing a gas-liquid mass transfer includes a container bounding a compartment and having a top wall, a bottom wall, and an encircling sidewall extending therebetween. A tube has a first end and an opposing second end, the first end of the tube being disposed within the compartment of the container. A nozzle is disposed within the compartment of the container and has at least one outlet, the nozzle being coupled with the tube so that a gas can be passed through the tube and out the at least one outlet of the nozzle. The nozzle is sufficiently buoyant so that when a fluid is disposed within the compartment of the container, the nozzle floats on the fluid.
Abstract:
A method for filtering a gas includes delivering a gas into a compartment of a gas filter assembly; applying a partial vacuum to the gas filter assembly so that the partial vacuum assists in drawing the gas through a porous filter body of the gas filter assembly that is at least partially disposed within the compartment of the gas filter assembly; and regulating the application of the partial vacuum based on a pressure reading of the gas upstream or downstream of the gas filter assembly.
Abstract:
A system for performing a gas-liquid mass transfer includes a container bounding a compartment and having a top wall, a bottom wall, and an encircling sidewall extending therebetween. A tube has a first end and an opposing second end, the first end of the tube being disposed within the compartment of the container. A nozzle is disposed within the compartment of the container and has at least one outlet, the nozzle being coupled with the tube so that a gas can be passed through the tube and out the at least one outlet of the nozzle. The nozzle is sufficiently buoyant so that when a fluid is disposed within the compartment of the container, the nozzle floats on the fluid.
Abstract:
Sample purification systems include a particle extraction assembly having a mixing compartment and a settling compartment. A biological sample is mixed with two liquid phases formulated to effectuate transfer of a biological molecule into a first phase and particulate contaminants into a second phase. The first phase includes a solubilizing salt, the second phase includes an organic molecule, and the mixture can have little or no monoatomic salt or dextran. The molecule-containing first phase can be optionally concentrated without also concentrating the particulate contaminants and introduced into a multi-stage liquid-liquid extractor, by which the biological molecule or molecular contaminants are extracted from the first phase into a third phase, thereby purifying the molecule away from contaminants. The extracted sample can be further purified through a series of processing steps. The system can be run in continuously mode to maintain sterility of the sample.
Abstract:
A method for filtering a gas includes delivering a gas into a compartment of a gas filter, the compartment being at least partially bounded by a casing comprised of a flexible sheet of polymeric film. A partial vacuum is applied to the gas filter so that the partial vacuum assists in drawing the gas through a porous filter body of the gas filter that is at least partially disposed within the compartment of the gas filter.
Abstract:
A system for performing a gas-liquid mass transfer includes a container bounding a compartment and having a top wall, a bottom wall, and an encircling sidewall extending therebetween. A first opening is formed on the container so as to communicate with the compartment. A liquid is disposed within the compartment and having a top surface disposed below the first opening. A gas is blown through the first opening so that the gas passes over at least a portion of the top surface of the liquid, the gas producing turbulence on the top surface of the liquid that is sufficient to produce a mass transfer between the gas and the liquid. A mixing element is disposed within the compartment.
Abstract:
A system for performing a gas-liquid mass transfer includes a container bounding a compartment and having a top wall, a bottom wall, and an encircling sidewall extending therebetween. A first opening is formed on the container so as to communicate with the compartment. A liquid is disposed within the compartment and having a top surface disposed below the first opening. A gas is blown through the first opening so that the gas passes over at least a portion of the top surface of the liquid, the gas producing turbulence on the top surface of the liquid that is sufficient to produce a mass transfer between the gas and the liquid. A mixing element is disposed within the compartment.