Abstract:
A reactor design and process for the dehydrogenation of hydrocarbons is presented. The reactor design includes a multibed catalytic reactor, where each of the reactor beds are fluidized. The catalyst in the reactor cascades through the reactor beds, with fresh catalyst input into the first reactor bed, and the spent catalyst withdrawn from the last reactor bed. The hydrocarbon feedstream is input to the reactor beds in a parallel formation, thereby decreasing the thermal residence time of the hydrocarbons when compared with a single bed fluidized reactor, or a series reactor scheme.
Abstract:
The present invention provides for a gas mixing device and its use in a catalytic partial oxidation reactor. The gas mixing device is typically an eductor such as a venturi-type eductor which will mix the feed gases used in the catalytic partial oxidation process. Two gas mixing devices may be used in sequence.
Abstract:
The present invention relates to a process for removing nitrogen oxides, sulfur oxides, mercury and mercuric oxide from gas streams such as furnace or utility boiler flue gas streams, particularly those derived from coal-fired utility boilers, or from a gas stream from another pollutant abatement process. Ozone will react with the impurities in the gas stream to form mercuric oxide and higher oxides of nitrogen which can be removed by scrubber means. Additionally, and alternatively, the present invention provides for the use of ozone and ultraviolet radiation to remove nitrogen oxides, sulfur oxides and mercury from gas streams.
Abstract:
A process and apparatus for mixing streams of regenerated and carbonized catalyst involves passing a catalyst stream into and out of a chamber in a lower section of a riser. The chamber fosters mixing of the catalyst streams to reduce their temperature differential before contacting hydrocarbon feed.
Abstract:
A process and apparatus for mixing streams of regenerated and carbonized catalyst involves passing a catalyst stream into and out of a chamber in a lower section of a riser. The chamber fosters mixing of the catalyst streams to reduce their temperature differential before contacting hydrocarbon feed.
Abstract:
A process and apparatus described is for distributing hydrocarbon feed to catalyst in a riser. Hydrocarbon feed is delivered to a plenum in the riser. Nozzles from the plenum inject feed into the riser to contact the catalyst. Streams of regenerated catalyst and carbonized catalyst may be passed to the riser and mixed around an insert in a lower section of a riser. The plenum may be located in the riser.
Abstract:
A process and apparatus for mixing streams of regenerated and carbonized catalyst involves passing a catalyst stream into and out of a chamber in a lower section of a riser. The chamber fosters mixing of the catalyst streams to reduce their temperature differential before contacting hydrocarbon feed.
Abstract:
A process and apparatus described is for distributing hydrocarbon feed to catalyst in a riser. Hydrocarbon feed is delivered to a plenum in the riser. Nozzles from the plenum inject feed into the riser to contact the catalyst. Streams of regenerated catalyst and carbonized catalyst may be passed to the riser and mixed around an insert in a lower section of a riser. The plenum may be located in the riser.
Abstract:
A process and apparatus for mixing streams of regenerated and carbonized catalyst involves passing a catalyst stream into and out of a chamber in a lower section of a riser. The chamber fosters mixing of the catalyst streams to reduce their temperature differential before contacting hydrocarbon feed.
Abstract:
Alkylation systems and processes are provided herein that include a slurry reactor. The slurry reactor receives a reactor feed slurry including catalyst and liquid isobutane, a olefin feed, and a circulating reactor vapor stream, where the slurry reactor produces a reactor liquid effluent stream, the reactor liquid effluent stream including catalyst, isobutane, and a liquid alkylate product. The catalyst in the reactor feed slurry can be regenerated catalyst from a catalyst regenerator. The catalyst can be regenerated after being removed from the liquid alkylate product and isobutane in the reactor liquid effluent stream.