摘要:
A system is provided to form illumination light beams having desirable divergence and directivity. For instance, the system can include an optical element and a relay. The optical element can include a pupil defining element. Further, the relay can have a first and second lens array arranged in series and configured to receive the plurality of beams and to re-image the plurality of beams into a corresponding plurality of beams in an image plane. Each of the plurality of corresponding beams can have a numerical aperture less than a numerical aperture of each of the plurality of beams.
摘要:
In an immersion lithography system, a moveable substrate unit is formed from a substrate and at least one optical element, with immersion liquid between them. The immersion liquid and the optical element move in unison with the substrate. Movement of the substrate unit reduces refractive index disturbance produced by turbulence during exposure scans. The projection optical system is enhanced with a dynamic axial compensation group. Elements in the dynamic axial compensation group can move to compensate aberrations caused by deviation of axial symmetry due to movement of the optical element in the substrate unit. The space in the substrate unit filled with immersion liquid may be dynamically controlled to provide proper working distance. If the optical element in the substrate unit has optical power, both resolution and depth of focus may be enhanced. Even if the optical element has no optical power, depth of focus may still be enhanced.
摘要:
A system and method are used to pattern illumination to form one or more devices on a substrate using a reflecting system, a pattern generator that defines an objection plane, a projection system, and the substrate that defines an image plane. A reflecting portion of the reflecting system is substantially parallel to a reflecting portion of the pattern generator. The reflecting portion of the pattern generator patterns the illumination beam and directs the patterned illumination beam towards the substrate via the projection system. Based on the relationship of the reflecting system and the pattern generator, the illumination beam is telecentric proximate the object plane and the patterned illumination beam is telecentric proximate the image plane. Through use of a reflecting optic and not a transmissive optic to direct light between the illuminator and the projection system, illumination efficiency is increased and errors imparted on the illumination are decreased.
摘要:
A method and system are provided of using a patterning device. An exemplary method includes defining a first region on a surface, the first region being associated with a first element of the patterning device, defining a second region on the surface, the second region being associated with a second element of the patterning device, activating the first element to expose the overlapping region, and deactivating the second element when the first element is active. The first region and the second region overlap in an overlapping region.
摘要:
A method and system are provided for printing a pattern on a photosensitive surface using a spatial light modulator (SLM). An exemplary method includes defining two or more exposure areas on the photosensitive surface, the exposure areas overlapping along respective edge portions of the exposure areas to form an overlap zone therebetween. Two or more exposure areas are exposed to print an image therein, the exposing extending through the overlap zone. The exposing within the overlap zone is then attenuated.
摘要:
Ultra-high resolution lithographic imaging and printing refers to the reduction in printed feature size, or “demagnification” obtained by the use of “bias”. A new meaning is given to Next Generation Lithography (NGL) in terms of fidelity in the reproduction of masks. Applying the classical manifestation of Fresnel diffraction, the mask pattern features are “demagnified” by “bias”. Classically, bias is minimized but the invention uses it to advantage so that: (i) mask-wafer gaps are thus enlarged; (ii) mask features are enlarged 3×-6× for a given printed feature size (cf. classically 1:1 in proximity lithography); (iii) the technique is extensible to beyond 25 nm feature sizes and (iv) exposure times are reduced. The invention is specifically demonstrated in proximity X-ray lithography but has a generic extension to all lithographies that can use out of focus imaging to produce ultra-high resolution. In consequence of the diffraction, printing defects due to mask faults are reduced including edge roughness, writing errors, diffraction effects at shielded areas and absorber thickness variations. Moreover the exposure doses from mask features of various sizes are controlled by various techniques.
摘要:
A patterning device, including alignment targets having alignment features formed from a plurality of diffractive elements, each diffractive element including an absorber stack and a multi-layered reflector stack is provided. The diffractive elements are configured to enhance a pre-determined diffraction order used for pre-alignment and to diffract light in a pre-determined direction of a pre-alignment system when illuminated with light of a wavelength used for the pre-alignment. The diffractive elements may occupy at least half of an area of each alignment feature. The diffractive elements may be configured to enhance first or higher order diffractions, while substantially reducing zeroth diffraction orders and specular reflection when illuminated with a wavelength used for reticle prealignment. The dimensions of each diffractive element may be a function of a diffraction grating period of each alignment feature.
摘要:
A patterning device, including alignment targets having alignment features formed from a plurality of diffractive elements, each diffractive element including an absorber stack and a multi-layered reflector stack is provided. The diffractive elements are configured to enhance a pre-determined diffraction order used for pre-alignment and to diffract light in a pre-determined direction of a pre-alignment system when illuminated with light of a wavelength used for the pre-alignment. The diffractive elements may occupy at least half of an area of each alignment feature. The diffractive elements may be configured to enhance first or higher order diffractions, while substantially reducing zeroth diffraction orders and specular reflection when illuminated with a wavelength used for reticle prealignment. The dimensions of each diffractive element may be a function of a diffraction grating period of each alignment feature.
摘要:
A wavefront measurement system includes a source of electromagnetic radiation. An illumination system delivers the electromagnetic radiation to an object plane. A source of a diffraction pattern is in the object plane. A projection optical system projects the diffraction pattern onto an image plane, which includes a mechanism (e.g., a shearing grating) to introduce the lateral shear. A detector is located optically conjugate with the pupil of the projection optical system, and receives an instant fringe pattern, resulting from the interference between sheared wavefronts, from the image plane. The diffraction pattern is dynamically scanned across a pupil of the projection optical system, and the resulting time-integrated interferogram obtained from the detector is used to measure the wavefront aberration across the entire pupil.
摘要:
A method and system are provided for printing a pattern on a photosensitive surface using a spatial light modulator (SLM). An exemplary method includes defining two or more exposure areas on the photosensitive surface, the exposure areas overlapping along respective edge portions of the exposure areas to form an overlap zone therebetween. Two or more exposure areas are exposed to print an image therein, the exposing extending through the overlap zone. The exposing within the overlap zone is then attenuated.