Abstract:
A lock comprised of a cylindrical body having a first passage extending axially through the body which passage is configured to enable a locking bar to be passed through the body, the bar having at least one orifice intermediate its extremities, the lock body having a second partial passageway extending from the side wall of the body at least into the first passageway and normal to the latter so that the orifice in the bar can be disposed in register with the second passageway. A cylindrical lock configured to fit slidably in the second passageway so that at least a portion of the lock may be thrust in the second passageway and through the bar orifice when the latter is disposed in register with the second passageway, when the lock may be secured by a key to be withdrawn from the outer end of the lock. This lock and bar may employed with external plates to secure adjacent members from movement relative to each other.
Abstract:
A narrow band relatively ultra stable radio apparatus for communicating alarm or data signals from a radio transmitter device to a radio receiver device, which receiver or transmitter may be carried by individuals, or may be battery operated or fixed to other devices, such as smoke detectors or burglary sensors, or the like, wherein the transmitting device and the receiving device are both phase locked to a 60 Hertz power line signal either by direct connection or via a 60 Hertz voltage induced into said radio devices from nearby power lines to thereby provide a means to precisely synchronize the transmitting device radio carrier signal and/or digital clock stream with the receiving device to achieve very high signal transmission reliability is disclosed. The apparatus is capable of transmitting an alarm digital identification code or a digital message and the receiving devices may output a simple on-off signal indicating the presence of an alarm, or a digital message may be output to control an apparatus attached to said receiver. A novel timing oscillator synchronized to the household AC power line frequency via wireless induced voltage for real time synchronization of both the transmitter and the receiver is also disclosed.
Abstract:
An integrated radio location and communication system comprising a plurality of radio locator-transmitter devices which may be fixed to vehicles and/or carried by persons and which are capable of transmitting the position and identity of said devices to two or more centrally located fixed receiver sites. Each of said locator-transmitters is continuously phase-locked to the RF carrier of a nearby commercial broadcast station, which station is modified slightly to provide periodic transmission of a "range-tone" which is on the order of a few kilohertz in frequency and is phase-locked to the RF carrier. An identical phase-locked range-tone is likewise generated within each locator-transmitter. The two centrally located fixed receivers are also phase-locked to the broadcast station RF carrier and likewise generate a range-tone. Thus the broadcast station, the plurality of locator-transmitters and the two fixed receiver sites all generate identical range-tones and these are continuously kept in synchronism with each other by virtue of a phase-lock loop arrangement wherein all range-tones are derived from (and locked to) the RF carrier of the AM broadcast station signal. The fixed receiver sites can compute the position of each locator-transmitter by comparing the phase of the range-tone sent to them directly by the locator-transmitter with the phase of the range-tone received directly from the broadcast station. A novel frame synchronization method is disclosed whereby the position (i.e., "time-slot") of each locator-transmitter emission and its RF subchannel uniquely identifies the emitting source and thus the location as well as identity of each of the many locator-transmitters.
Abstract:
A bidirectional cable television system provides for transmission of signals from cable subscribers downlink in the same direction as the ensemble of television channels which the cable television system is already constructed to deliver. The subscriber signals may be transmitted over the cable in the blanking intervals of a cable television channel, using the T-NET technique described in U.S. Pat. No. 4,750,036. Alternatively, the signals may be carried over a dedicated channel, or transmitted cochannel along a cable television channel carrying ordinary programming by adding the subscriber information to alternating video frames in alternating polarity to achieve visual cancellation. The subscriber signals are collected after the last distribution line amplifier in the cable downlink. The collected signals are transmitted to a central receiver via wireless or other customary means such as a modem. The collected signals may alternatively be transmitted over the air to the central receiver in the blanking intervals of a broadcast television channel using the T-NET technique.
Abstract:
A spread spectrum system provides bidirectional digital communication on a vacant television (TV) channel for simultaneous use by more than 75,000 subscribers using time and frequency division multiplex signals locked to horizontal and vertical sync pulses of an adjacent channel Host TV station. The system, whose operation is analogous to a radar system, comprises (1) the Host TV station to send down-link sync and data pulses to subscribers during the horizontal blanking interval (HBI), (2) subscriber "transponders" which detect those signals and transmits up-link "echo" data pulses only during the HBI to eliminate interference to TV viewers, and (3) a central receiver which also uses the host TV sync pulses to trigger range gates to detect the up-link data pulses. In a preferred embodiment the central receiver employs directional antennas to determine direction to transponders and to define angular sectors partitioning the service area into pie-link "cells" which permit frequency re-use in non-contiguous sectors (like cellular radio). The system thus operates like a radar to measure elasped time between receipt of TV sync pulses and receipt of transponder response pulses and measures bearing to transponders to thereby determine the location of fixed or mobile subscribers as well as provide data links to them. Transponders may share user's existing TV antenna or may operate on cable TV and could be packaged as "RF modems" for personal computers, as transceivers for mobile or portable use, or they may be integrated with a TV receiver to provide "interactive television".
Abstract:
A spread spectrum system provides bidirectional digital communication on a vacant television (TV) channel for simultaneous use by more than 75,000 subscribers using time and frequency division multiplex signals locked to horizontal and vertical sync pulses of an adjacent channel Host TV station. The system, whose operation is analogous to a radar system, comprises: (1) the Host TV station to send down-link sync and data pulses to subscribers during the horizontal blanking interval (HBI), (2) subscriber "transponders" which detect those signals and transmits up-link "echo" data pulses only during the HBI to eliminate interference to TV viewers, and (3) a central receiver which also uses the host TV sync pulses to trigger range gates to detect the up-link data pulses. In a preferred embodiment the central receiver employs directional antennas to determine direction to transponders and to define angular sectors partitioning the service area into pie-link "cells" which permit frequency re-use in non-contiguous sectors (like cellular radio). The system thus operates like a radar to measure elapsed time between receipt of TV sync pulses and receipt of transponder response pulses and measures bearing to transponders to thereby determine the location of fixed or mobile subscribers as well as provide data links to them. Transponders may share user's existing TV antenna or may operate on cable TV and could be packaged and "RF modems" for personal computers, as transceivers for mobile or portable use, or they may be integrated with a TV receiver to provide "interactive television".
Abstract:
A system is disclosed which employs existing broadcast stations to transmit synchronizing and supervisory signals for use by telephone communication devices at remote locations for timing purposes and for coordinating their activities with activities at other locations. The system comprises a broadcast transmitter modified to transmit phase (or frequency) modulated digital signals, which digital signals are synchronized to the carrier of the broadcast station. The broadcast station includes equipment to both periodically transmit synchronizing and supervising signals to coordinate activity of remote devices, and to transmit messages to them. The messages are generated at a central computer location and conveyed to the broadcast station by a dedicated phone line, a microwave link, or other known methods. At remote locations a TELRAD modem includes a radio receiver to detect the broadcast signals which synchronize and supervise them and associated customer apparatus. A central control computer generates the messages. Communications to and from remote monitoring locations is also accomplished. Another important object is to provide broadcast transmissions from more than one broadcast station by providing a receiver at secondary broadcast stations tuned to the primary master transmitter, which receiver detects the transmissions of the master transmitter, modulates the repeater transmitter in the prescribed manner and retransmits the signal to extend the service area.
Abstract:
A piggyback code switch which provides a unique digital code for various types of circuits, for example, garage door openers, load management control receivers, etc., is used with dual-in-line packaging diodes or resistor arrays in such a manner as to enable any combination of resistors or diodes to be pulled to a preselected voltage level and thus provide such circuits with a common starting code. A switch comprising an array of pins extending from a conductive base is placed atop a DIP network. Specific DIP resistors are shorted together by selectively removing the pins of the switch in accordance with a prearranged coding plan. This provides each circuit with a unique digital identification code.
Abstract:
The inventor discloses an ultra narrow band relatively ultra stable radio apparatus for communicting paging or control signals from a central transmitter to a multiplicity of remotely located receivers, which receivers may be carried on the person of individuals or may be fixed to other devices which they control, such as city traffic control lights, programmable signs, machines, or the like, wherein the central transmitting device and the remote receiving device are both phase locked to a local broadcast station RF carrier so as to provide a means to precisely synchronize the transmitting device with the receiving device and thereby achieve very high signal-to-noise ratio transmissions. The apparatus is capable of transmitting a digital identification code or a digital message and the receiving devices may output a simple on-off signal indicating the presence of a call, or digital message may be output to control an apparatus attached to said receiver. An alternative bidirectional remote device that can both receive and transmit is also disclosed. A novel frequency synthesizer, and means for real time synchronization of both the transmitter and the receiver, are also disclosed.
Abstract:
Ultra-narrow-band system for communication between a transmitter device and a receiver device provided by locking both to a carrier signal from a radio broadcast station and synthesizing a precise local frequency at each device as a preset multiple of the frequency of the carrier. Such a system is usable in a multi-station alarm and status communication system including a multiplicity of independent radio alarm transmitters whose various carrier frequencies are different from but phased locked to a local radio broadcast station, and a central alarm receiving station which employs a corresponding multiplicity of synchronous detectors. The detectors each have associated with them a synthesized local oscillator source which is also phase-locked to the same radio broadcast station used by the alarm transmitters. Both the alarm transmitters and the central receiver are thereby accurately referenced to a readily available local frequency source (the broadcast station). As a consequence, very narrow-band radio circuits may be employed and the receiver and transmitter bandwidth may be accurately matched to the information content of the alarm and status signal source to achieve high signal-to-noise ratio reliable transmissions. The disclosed apparatus is relatively immune to intentional or unintentional interference and will burn-through most conventional transmissions which may be transmitting on the same radio channel at the same time, without unduly bothering those other unrelated transmissions.