Abstract:
An electrolytic cell and a method of electrochemical oxidation of manganese (II) ions to manganese(III) ions in the electrolytic cell are described. The electrolytic cell comprises (1) an electrolyte solution of manganese(II) ions in a solution of 9 to 15 molar sulfuric acid; (2) a cathode immersed in the electrolyte solution; and (3) an anode immersed in the electrolyte solution and spaced apart from the cathode. Various anode materials are described including vitreous carbon, reticulated vitreous carbon, and woven carbon fibers.
Abstract:
An electrolytic cell and a method of electrochemical oxidation of manganese(II) ions to manganese(III) ions in the electrolytic cell are described. The electrolytic cell comprises (1) an electrolyte solution of manganese(II) ions in a solution of at least one acid; (2) a cathode immersed in the electrolyte solution; and (3) an anode immersed in the electrolyte solution and spaced apart from the cathode. Various anode materials are described including vitreous carbon, reticulated vitreous carbon, woven carbon fibers, lead and lead alloy. Once the electrolyte is oxidized to form a metastable complex of manganese(III) ions, a platable plastic may be contacted with the metastable complex to etch the platable plastic. In addition, a pretreatment step may also be performed on the platable plastic prior to contacting the platable plastic with the metastable complex to condition the plastic surface.
Abstract:
An electrolytic cell and a method of electrochemical oxidation of manganese(II) ions to manganese(III) ions in the electrolytic cell are described. The electrolytic cell comprises (1) an electrolyte solution of manganese(II) ions in a solution of at least one acid; (2) a cathode immersed in the electrolyte solution; and (3) an anode immersed in the electrolyte solution and spaced apart from the cathode. Various anode materials are described including vitreous carbon, reticulated vitreous carbon, woven carbon fibers, lead and lead alloy. Once the electrolyte is oxidized to form a metastable complex of manganese(III) ions, a platable plastic may be contacted with the metastable complex to etch the platable plastic. In addition, a pretreatment step may also be performed on the platable plastic prior to contacting the platable plastic with the metastable complex to condition the plastic surface.
Abstract:
A method of treating a substrate, wherein the substrate comprises a layer deposited from a trivalent chromium electrolyte, is described. The method includes the steps of providing an anode and the chromium(III) plated substrate as a cathode in an electrolyte comprising (i) a trivalent chromium salt; and (ii) a complexant; and passing an electrical current between the anode and the cathode to passivate the chromium(III) plated substrate. The substrate may be first plated with a plated nickel layer so that the chromium(III) plated layer is deposited over the nickel plated layer.
Abstract:
An electrolytic cell and a method of electrochemical oxidation of manganese(II) ions to manganese(III) ions in the electrolytic cell are described. The electrolytic cell comprises (1) an electrolyte solution of manganese(II) ions in a solution of 9 to 15 molar sulfuric acid; (2) a cathode immersed in the electrolyte solution; and (3) an anode immersed in the electrolyte solution and spaced apart from the cathode. Various anode materials are described including vitreous carbon, reticulated vitreous carbon, and woven carbon fibers.
Abstract:
A method of preparing a solution capable of etching a platable plastic. The method comprises the steps of: (a) providing an electrolyte comprising a solution of manganese(II) in a solution of 9 to 15 molar sulfuric acid or phosphoric acid to an electrolytic cell; (b) applying a current to the electrolytic cell, wherein the electrolytic cell comprises an anode and a cathode; and (c) oxidizing the electrolyte to form manganese(III) ions, wherein the manganese(III) ions form a metastable sulfate complex. Thereafter, a platable plastic may be immersed in the metastable sulfate complex for a period of time to etch the platable substrate prior to subsequent plating steps.
Abstract:
A method of preparing a solution capable of etching a platable plastic. The method comprises the steps of: (a) providing an electrolyte comprising a solution of manganese(II) in a solution of 9 to 15 molar sulfuric acid or phosphoric acid to an electrolytic cell; (b) applying a current to the electrolytic cell, wherein the electrolytic cell comprises an anode and a cathode; and (c) oxidizing the electrolyte to form manganese(III) ions, wherein the manganese(III) ions form a metastable sulfate complex. Thereafter, a platable plastic may be immersed in the metastable sulfate complex for a period of time to etch the platable substrate prior to subsequent plating steps.
Abstract:
A method of coating an electroplating rack used for supporting non-conductive substrates during a plating process. The method comprises the steps of contacting at least a portion of the electroplating rack with a plastisol composition, the plastisol composition having dispersed therein an effective amount of an additive; and heating the electroplating rack with the plastisol composition thereon to a suitable temperature and for a sufficient time to cure the plastisol and form a solid insulating coating on the electroplating rack. The coated electroplating rack may then be used for mounting non-conductive substrates for subsequent metallization steps.
Abstract:
A method of coating an electroplating rack used for supporting non-conductive substrates during a plating process. The method comprises the steps of contacting at least a portion of the electroplating rack with a plastisol composition, the plastisol composition having dispersed therein an effective amount of an additive having the structure: wherein R, R′, R″ and R′″ are either the same or are independently selected from the group consisting of benzyl, substituted benzyl, phenyl or substituted phenyl; or wherein R, R′, R″ and R′″ are either the same or are independently selected from C1-C10 alkyl (either straight or branched chain), benzyl, substituted benzyl, phenyl, or substituted phenyl and M is a divalent metal cation, preferably selected from the group consisting of nickel, copper and zinc; and heating the electroplating rack with the plastisol composition thereon to a suitable temperature and for a sufficient time to cure the plastisol and form a solid insulating coating on the electroplating rack. The coated electroplating rack may then be used for mounting non-conductive substrates for subsequent metallization steps.