Abstract:
An automated retractable step system is has at least one linkage subassembly for attachment to a vehicle frame. A step is attached to the linkage subassembly and is movable between a stowed position and a deployed position. An actuator is coupled with the linkage subassembly for moving the step between the stowed and deployed positions. A sensor subassembly includes a sensing electrode and a reference electrode disposed adjacent to the sensing electrode and a driven shield electrode extending generally parallel to and in a spaced relationship with the sensing electrode and the reference electrode. A controller is electrically connected to the sensing electrode and to the reference electrode and to the driven shield electrode. The controller is also electrically connected to the actuator for controlling the actuator to move the step between the stowed position and the deployed position in response to the signal from the sensor subassembly.
Abstract:
A system and method for providing access to a vehicle operation includes a first user-input interface, a second user-input interface, and a vehicle controller. The first user-input interface is configured to interact with a user via a swipe-up input. The second user-input interface is configured to interact with the user via an application independent of the swipe-up input. The vehicle controller is configured to control the vehicle operation in response to detecting a first swipe-type user-input via the first user-input interface and a second user-input via the second user-input interface within a predetermined time.
Abstract:
A method for operating a closure panel of a vehicle, comprising: using a processor, determining whether a first proximity sensor and a second proximity sensor located on a periphery of the vehicle have been sequentially activated to indicate an object moving across the first proximity sensor and the second proximity sensor; and, controlling the closure panel to open or close when the first proximity sensor and the second proximity sensor have been sequentially activated.
Abstract:
A method for hands-free operation of a power window of a vehicle, comprising: determining an order of activation of a first sensor and a second sensor, the first sensor and the second sensor being spaced apart and located inside the vehicle proximate the power window; when the first sensor is activated before the second sensor, controlling a window pane of the power window to move toward a first position; when the second sensor is activated before the first sensor, controlling the window pane to move toward a second position; and, when the first sensor and the second sensor are activated simultaneously or approximately simultaneously while the window pane is moving, controlling the window pane to stop moving.
Abstract:
A system and method for providing access to a vehicle operation includes a first user-input interface, a second user-input interface, and a vehicle controller. The first user-input interface is configured to interact with a user via a swipe-up input. The second user-input interface is configured to interact with the user via an application independent of the swipe-up input. The vehicle controller is configured to control the vehicle operation in response to detecting a first swipe-type user-input via the first user-input interface and a second user-input via the second user-input interface within a predetermined time.
Abstract:
A method for determining a capacitance value of a capacitive sensor begins by applying a sensor signal (Vx) to the capacitive sensor. The sensor signal (Vx) includes a number of charge-discharge pulse pairs distributed over a first period of time (T/N), with each pulse pair having a different pulse period. The method then proceeds by accumulating a number (N) of samples of a reference voltage (Vs) measured across a reference capacitor (Cs) that is coupled to the capacitive sensor over a second period of time (T) to produce an accumulated capacitance value (ACCUMULATED). The accumulated capacitance value (ACCUMULATED) is then divided by the number (N) of the samples to determine the capacitance value (Cx) of the capacitive sensor.
Abstract:
A system and method for providing access to a vehicle operation includes a first user-input interface, a second user-input interface, and a vehicle controller. The first user-input interface is configured to interact with a user via a swipe-up input. The second user-input interface is configured to interact with the user via an application independent of the swipe-up input. The vehicle controller is configured to control the vehicle operation in response to detecting a first swipe-type user-input via the first user-input interface and a second user-input via the second user-input interface within a predetermined time.
Abstract:
In an aspect, a pinch sensor is provided, comprising: an elongate non-conductive casing enclosing first, second, and third elongate conductive electrodes; the first and second electrodes being separated by a portion of the casing, a capacitance between the first and second electrodes changing when an obstacle approaches the first electrode to provide a proximity indication of the obstacle to the pinch sensor; and, the second and third electrodes being separated by an air gap formed in the casing, a resistance between the second and third electrodes changing when the second and third electrodes come into contact upon compression of the casing by the obstacle to provide a contact indication of the obstacle with the pinch sensor.
Abstract:
An obstacle sensor for a closure panel of a vehicle includes an elongate non-conductive case which encloses a first, second, and third elongate conductive electrodes. The first and second electrodes are separated by a portion of the case, with a capacitance between the first and second electrodes changing when an obstacle approaches the first electrode. The changed capacitance of the obstacle sensor provides a proximity indication of the obstacle to the obstacle sensor. The second and third electrodes are separated by an air gap formed in the case, with a resistance between the second and third electrodes changing when the second and third electrodes come into contact upon compression of the case by the obstacle. The changed resistance of the obstacle sensor provides a contact indication of the obstacle with the obstacle sensor.
Abstract:
An automated retractable step system has at least one linkage subassembly for attachment to a vehicle frame. A step is attached to the linkage subassembly and is movable between a stowed position and a deployed position. An actuator is coupled with the linkage subassembly for moving the step between the stowed and deployed positions. A sensor subassembly includes a sensing electrode and a reference electrode disposed adjacent to the sensing electrode and a driven shield electrode extending generally parallel to and in a spaced relationship with the sensing electrode and the reference electrode. A controller is electrically connected to the sensing electrode and to the reference electrode and to the driven shield electrode. The controller is also electrically connected to the actuator for controlling the actuator to move the step between the stowed position and the deployed position in response to the signal from the sensor subassembly.