Abstract:
A method of scheduling transmitting and receiving communication slots for co-located radio devices is provided. A Bluetooth (BT) device first synchronizes its communication time slots with a co-located radio module, and then obtains the traffic pattern of the co-located radio module. Based on the traffic pattern, the BT device selectively skips one or more TX or RX time slots to avoid data transmission or reception in certain time slots and thereby reducing interference with the co-located radio module. In addition, the BT device generates a co-located coexistence (CLC) bitmap and transmits the CLC bitmap to its peer BT device such that the peer BT device can also skip data transmission or reception in certain time slots affected by the co-located radio module. The skipped time slots are disabled for TX or RX operation to prevent interference and to achieve more energy saving.
Abstract:
A wireless communication apparatus includes a channel estimation circuit, a beamforming control circuit, and a transmit (TX) circuit. The channel estimation circuit estimates a channel between the wireless communication apparatus and another wireless communication apparatus during at least one first time slot. The beamforming control circuit determines beamforming coefficients according to the estimated channel. The TX circuit applies the beamforming coefficients to transmission of an output data during at least one second time slot later than the at least one first time slot. During the at least one second time slot, the output data is transmitted to another wireless communication apparatus via multiple antennae. The wireless communication apparatus performs communications according to a normal frequency hopping sequence in compliance with a communication specification.
Abstract:
Systems and methods of mesh network communication enabling a relay node to autonomously select a packet propagation mechanism. Upon receiving a packet, which may carry an indication for flooding propagation as set by the edge node originating the packet, or carry no specification for any propagation mode, the relay node determines whether the packet is eligible for routing-propagation based on a number of factors, such as whether there is an existent valid route from the source node to the destination node, whether the packet is originated from a friend edge node, and whether a route discovery process has been initiated. Accordingly, the relay node may change the indication to routing propagation and forward it by routing-relaying. Thus, the packet can be propagated over the mesh network by routing propagation, despite the initial setting for flooding propagation as specified by the edge node or no setting by the edge node.
Abstract:
A wireless communication device, serving as a destination node of one or more data packets propagated in a wireless mesh network, is provided. The wireless communication device includes a wireless transceiver and a controller. The wireless transceiver performs wireless transmission and reception in the wireless mesh network. The controller selects a first relay node to serve as a friend node for the wireless communication device and to store the data packets which arrive when the wireless communication device operates in a sleep mode, and broadcast, via the wireless transceiver, a notification message in the wireless mesh network when selecting a second relay node to serve as the friend node for the wireless communication device.
Abstract:
A mobile communications device supporting operation on a first wireless technology and a second wireless technology is provided. The device includes a wireless module performing wireless transceiving to and from a first station of a first wireless technology and a second station of a second wireless technology, and a controller module, transmitting a control message prior to the starting of a uplink transmission period of the first wireless technology via the wireless module to occupy the uplink transmission period of the first wireless technology so as to allow transmission of signals of the second wireless technology during the uplink transmission period of the first wireless technology. In operation, the controller module further rearranges the transmission of signals of the second wireless technology to end the transmission of signals of the second wireless technology prior to the starting of a downlink transmission period of the first wireless technology.
Abstract:
A communications apparatus includes a radio module providing a predetermined wireless communications service and communicating with a peer communications apparatus in a predetermined frequency band in compliance with a predetermined protocol. The radio module includes a processor. The processor determines a maximum packet transmission duration, transmits information regarding the maximum packet transmission duration to the peer communications apparatus and negotiates a preferred packet transmission duration with the peer communications apparatus.
Abstract:
A method of managing data transmission for a receiving terminal of a first wireless system wherein the first wireless system coexists with at least one second wireless system includes receiving a transmission schedule of each of the at least one second wireless system; determining a usable time period for the first wireless system according to the transmission schedule of each of the at least one second wireless system; and sending a clear to send (CTS) to self signal or a power saving signal to indicate an interruption of the usable time period according to a length of the usable time period.
Abstract:
A method of scheduling transmitting and receiving communication slots for co-located radio devices is provided. A Bluetooth (BT) device first synchronizes its communication time slots with a co-located radio module, and then obtains the traffic pattern of the co-located radio module. Based on the traffic pattern, the BT device selectively skips one or more TX or RX time slots to avoid data transmission or reception in certain time slots and thereby reducing interference with the co-located radio module. In addition, the BT device generates a co-located coexistence (CLC) bitmap and transmits the CLC bitmap to its peer BT device such that the peer BT device can also skip data transmission or reception in certain time slots affected by the co-located radio module. The skipped time slots are disabled for TX or RX operation to prevent interference and to achieve more energy saving.
Abstract:
A multi-input multi-output (MIMO) Bluetooth module with effectively suppressed mutual interference is disclosed. The MIMO Bluetooth module has multiple Bluetooth transceivers which operate in a synchronized transmission mode, in which no Bluetooth transceiver is permitted to transmit data when any of the Bluetooth transceivers are receiving data.
Abstract:
A device identifying method for identifying whether a candidate member device belongs to a device set or not by an identifying device. The device set comprising at least one member device. The method comprises: (a) establishing a connection between the identifying device and a first member device among the member device, to acquire a set ID and at least one identifying key from the first member device; (b) discovering the candidate member device according to the set ID; (c) generating identifying data according to the identifying key and transmitting the identifying data to the candidate member device; and (d) determining whether the candidate member device belongs to the device set or not according to a comparing result for the identifying data.