Abstract:
A semiconductor device includes a semiconductor die having an active surface, an opposite surface, a vertical sidewall extending between the active surface and the opposite surface, and input/output (I/O) connections disposed on the active surface. A redistribution layer (RDL) is disposed on the active surface of the semiconductor die. A plurality of first connecting elements is disposed on the RDL. A molding compound encapsulates the opposite surface and the vertical sidewall of the semiconductor die. The molding compound also covers the RDL and surrounds the plurality of first connecting elements. An interconnect substrate is mounted on the plurality of first connecting elements and on the molding compound.
Abstract:
A semiconductor device includes a semiconductor substrate and a passive component. The passive component is formed on the semiconductor substrate and includes a first polysilicon (poly) layer, a salicide blockage (SAB) layer and a first salicide layer. The SAB layer is formed on the first poly layer. The first salicide layer is formed on the SAB layer.
Abstract:
A MOS device with an isolated drain includes: a semiconductor substrate having a first conductivity type; a first well region embedded in a first portion of the semiconductor substrate, having a second conductivity type; a second well region disposed in a second portion of the semiconductor substrate, overlying the first well region and having the first conductivity type; a third well region disposed in a third portion of the semiconductor substrate, overlying the first well region having the second conductivity type; a fourth well region disposed in a fourth portion of the semiconductor substrate between the first and third well regions, having the first conductivity type; a gate stack formed over the semiconductor substrate; a source region disposed in a portion of the second well region, having the second conductivity type; and a drain region disposed in a portion of the fourth well region, having the second conductivity type.
Abstract:
A semiconductor package includes a substrate, a first insulation layer, a conductive via and a conductive trace. The substrate includes a conductive component. The first insulation layer is formed on the substrate and having a first through hole exposing the conductive component. The conductive via is formed within the first through hole. The conductive trace is directly connected to the conductive via which is located directly above the first through hole.
Abstract:
A semiconductor package includes a substrate, a first insulation layer, a conductive pad, a second insulation layer and a conductive trace. The first insulation layer is formed on the substrate and having a first through hole. The conductive pad is formed on the substrate through the first through hole. The second insulation layer has a first surface and a second through hole, wherein the second through hole extends to the conductive pad from the first surface. The conductive trace has a second surface and is connected to the conductive pad through the second through hole. The entire of the first surface is in the same level, and the entire of the second surface is in the same level.
Abstract:
A semiconductor device capable of high-voltage operation includes a semiconductor substrate having a first conductivity type. A first well doped region is formed in a portion of the semiconductor substrate. The first well doped region has a second conductivity type. A first doped region is formed on the first well doped region, having the second conductivity type. A second doped region is formed on the first well doped region and is separated from the first doped region, having the second conductivity type. A first gate structure is formed over the first well doped region and is adjacent to the first doped region. A second gate structure is formed beside the first gate structure and is close to the second doped region. A third gate structure is formed overlapping a portion of the first gate structure and a first portion of the second gate structure.
Abstract:
A semiconductor device capable of high-voltage operation includes a semiconductor substrate, a first well region, a second well region, a first gate structure, a first doped region, a second doped region, and a second gate structure. The first well region is formed in a portion of the semiconductor substrate. The second well region is formed in a portion of the first well region. The first gate structure is formed over a portion of the second well region and a portion of the first well region. The first doped region is formed in a portion of the second well region. The second doped region is formed in a portion of the first well region. The second gate structure is formed over a portion of the first gate structure, a portion of the first well region, and a portion of the second doped region.
Abstract:
The electronic component includes a semiconductor substrate, a first doped region, a second doped region, a gate structure, a dielectric layer and a conductive portion. The semiconductor substrate has an upper surface. first doped region embedded in the semiconductor substrate. The second doped region is embedded in the semiconductor substrate. The gate structure is formed on the upper surface. The dielectric layer is formed above the upper surface and located between the first doped region and the second doped region. The conductive portion is formed on the dielectric layer.
Abstract:
A semiconductor device includes a semiconductor substrate and a first well region formed in the semiconductor substrate. An insulator is formed in and over a portion of the first well region and a second well region is formed in the first well region at a first side of the insulator. A first doped region is formed in the second well region, and a second doped region is formed in the first well region at a second side opposite the first side of the insulator. A gate structure is formed over the insulator, the first well region between the second well region and the insulator, and the second well region. An isolation element is formed in the semiconductor substrate, surrounding the first well region and the second well region. The first and second doped regions are formed with asymmetric configurations from a top view.
Abstract:
A method for fabricating a metal-oxide-semiconductor (MOS) device with isolated drain. The method performing operations of: forming a first well region embedded in a portion of a semiconductor substrate; forming a first patterned mask layer over the semiconductor substrate, exposing portions of the semiconductor substrate; performing a first ion implant process on the portions of the semiconductor substrate exposed by the first patterned mask layer; performing a second ion implant process to a second well region exposed, forming a fourth well region between the first well region and the second well region; performing a third implant process to the second well region, forming a fifth well region overlying the fourth well region; forming a source region in a portion of the third well region; and forming a drain region in a portion of the fifth well region.