Abstract:
A detection method and a detection device for detection of at least one region of interest (ROI) using the same are provided. A plurality of successive frames is captured by an image sensor. A first frame among the plurality of successive frames is divided into a plurality of sub regions. A first vital-sign feature of a first sub region among the plurality of sub regions is obtained. A first feature signal is generated according to the first vital-sign feature. Whether the first feature signal is a first valid image signal is determined. When it is determined that the first feature signal is a first valid image signal, the first sub region is identified as a first ROI. In the frames occurring after the first frame, the first ROI is tracked.
Abstract:
A UE controls in-device coexistence (IDC) indication message generation to mitigate potential throughput impact on UE to maintain UE performance as much as possible. Under the proposed method, FDM-based solution is always preferred by the UE. Based on the IDC indication message generated by the UE, a network applies an IDC interference mitigation solution that prioritizes FDM-based solution. Specifically, the UE first sends an IDC message requesting FDM-based solution. In case the serving eNB does not respond, the UE sends a new IDC message by alternating IDC option. Even if a TDM-based solution has been received, the UE may continue requesting FDM-based solution to gain UE performance.
Abstract:
An embodiment of a method for call management, performed by a processing unit of a UE (user equipment), is disclosed. The method is employed in a hardware configuration of at least two subscriber identity cards sharing a radio resource. A PS (packet-switched) service is first provided for the first subscriber identity card. Packet data transmission and reception is handed over to a second PS service with the second subscriber identity card from the first PS service after receiving a call request requesting a CS (circuit-switched) service with the second subscriber identity card.
Abstract:
A measurement apparatus and method for measuring a vital sign of a subject are provided. A plurality of frames showing a subject is captured. A region of interest (ROI) on the subject is detected. A vital-sign signal is generated according to the sensing signals related to the ROI. A quality index of the vital-sign signal is evaluated. Whether the subject is a living body is determined according to the quality index. A determination result of determining whether the subject is the living body is used to control a heart-rate measurement operation.
Abstract:
An electronic device controlling method and a user registration method are provided. In the electronic device controlling method, when a target device receives a first and a second control commands which are identical, but performed by different users simultaneously or separately, the target device performs a first predetermined operation based on an identity of the user performing the first control command, and performs a second predetermined operation based on an identity of the user performing the second control command. In the user registration method, a user registered identity model corresponding to a user to be registered is established according to identity information of the user, and is mapped to a user profile comprising a relationship between the control commands and the predetermined operations. By acquiring the registered information, the target device is able to perform the user dependent operations.
Abstract:
A mobile communication device is provided with a processor. The processor is configured to receive a request for starting a Mobile Originated (MO) service, determine a plurality of remaining usage quotas for the MO service, which correspond to a plurality of subscriber numbers, and select one of the subscriber numbers for starting the MO service according to the remaining usage quotas.
Abstract:
A UE controls in-device coexistence (IDC) indication message generation to mitigate potential throughput impact on UE to maintain UE performance as much as possible. Under the proposed method, FDM-based solution is always preferred by the UE. Based on the IDC indication message generated by the UE, a network applies an IDC interference mitigation solution that prioritizes FDM-based solution. Specifically, the UE first sends an IDC message requesting FDM-based solution. In case the serving eNB does not respond, the UE sends a new IDC message by alternating IDC option. Even if a TDM-based solution has been received, the UE may continue requesting FDM-based solution to gain UE performance.
Abstract:
A multi-core processor system and a method for assigning tasks are provided. The multi-core processor system includes a plurality of processor cores, configured to perform a plurality of tasks, and each of the tasks is in a respective one of a plurality of scheduling classes. The multi-core processor system further includes a task scheduler, configured to obtain first task assignment information about tasks in a first scheduling class assigned to the processor cores, obtain second task assignment information about tasks in one or more other scheduling classes assigned to the processor cores, and refer to the first task assignment information and the second task assignment information to assign a runnable task in the first scheduling class to one of the processor cores.
Abstract:
A mobile communication device including a Baseband processor is provided. The Baseband processor determines an ending period of time of a Transmission Time Interval (TTI) for processing one or more first Service Data Units (SDUs) in a first protocol layer, and prior to the ending period of time, pre-processes one or more second SDUs, which are received during the remaining period of time of the TTI, and re-processes the pre-processed second SDUs in a second protocol layer to generate the first SDUs. Particularly, the second protocol layer is hierarchically higher than the first protocol layer in a communication protocol stack.
Abstract:
The invention provides an input-output calibration method performed by a processing unit connected to an output device and an input device. The output and the input device correspond to an output and an input device coordinate systems, respectively. The processing unit uses the input device to derive a plurality of lines in the input device coordinate system for M calibration points by sensing a viewer specifying the M calibration points' positions, the plurality of lines are between the M calibration points and the viewer's the predetermined object's different positions, M is a positive integer equal to or larger than three. The processing unit derives the M calibration points' coordinates in the input device coordinate system according to the plurality of lines and uses the M calibration points' coordinates in the output and the input device coordinate systems to derive the relationship between the output and the input device coordinate systems.