Abstract:
A portable electronic device including a battery coupled to an accessory circuit, a battery monitoring circuit coupled to the battery, and a processor connected to the battery monitoring circuit and the accessory circuit. The battery monitoring circuit determines an output current of the battery, and the processor receives an indication of the output current. The processor determines, based on the indication of the output current of the battery, a power characteristic of the accessory circuit, and control a power that is to be provided to the accessory circuit based on the power characteristic of the accessory circuit.
Abstract:
An audio accessory with high and low impedance paths to a speaker is provided, and a radio therefor. The audio accessory comprises: a speaker; an audio interface to connect to a respective audio interface of the radio; a switching circuit comprising: high and low impedance paths; and a switch to connect the audio interface to the speaker via one of the high and low impedance paths, the switch initially connecting the audio interface to the speaker via the high impedance path. The accessory further comprises a data interface to connect to a respective data interface of the radio; and a controller to: in response to receiving, via the first data interface, from the radio, a message to control the switch to connect the audio interface to the speaker via the low impedance path, control the switch to connect the audio interface to the speaker via the low impedance path.
Abstract:
A method and apparatus for mission critical standby of a portable communication device are disclosed. A portable communication device may include a primary processor for a first operating platform, a secondary processor for a second operating platform and communicatively coupled to the primary processor, and a power state manager that may have a first mode and a second mode. The power state manager may be configured to determine whether the primary processor is in a powered off state and sequence supply of power to the secondary processor. The first mode may allow the primary processor to monitor a power state of the secondary processor based on a determination that the primary processor is not in the powered off state and the second mode may enable the power state manager to monitor the power state based on a determination that the primary processor is in the powered off state.
Abstract:
Methods and devices for connecting an accessory device to a connector port of a mobile communication device and automatically detecting an operational mode of the connector port are provided. The method includes implementing a USB Type-C device detection at an electronic processor of the mobile communication device and monitoring a first and second pin of the connector port for pull-up and pull-down signals from a connected accessory. The method also includes interrupting the USB Type-C device detection when a pull-down signal is detected and determining whether an accessory signal is detected at a third pin of the connector port. The method also includes implementing a LMR accessory detection when the accessory signal is detected and completing the USB Type-C device detection when the accessory signal is not detected.
Abstract:
Improved connectivity between a portable communication device and an accessory is provided through the configuration of a USB type interface. Independent control of a mission-critical subsystem and auxiliary subsystems allow for mission-critical audio and push-to-talk (PTT) to be maintained even in the event of a fault condition within the system. The configurability aspect of the interface allows for additional mission-critical input features to be configured into independent mission-critical subsystems.
Abstract:
A communication system (100) formed of a portable radio (102) and radio accessory (106) is provided in which the accessory (106) provides emergency strobe and flashlight modes, the flashlight mode further providing a low battery indicator. Strategic control of lighting triggers and patterns allows for a single high intensity LED (132) to be used for both emergency strobe and flashlight modes, with minimized impact on battery life.
Abstract:
Systems and methods for beamforming audio signals received from a microphone array. One example embodiment provides an electronic device. The electronic device includes a microphone array and an electronic processor communicatively coupled to the microphone array. The electronic processor is configured to estimate an ambient noise level. The electronic processor is configured to compare the ambient noise level to a first threshold and a second threshold, the second threshold being lower than the first threshold. The electronic processor is configured to determine a beam pattern for the microphone array based on the comparison of the ambient noise level to the first threshold and the second threshold. The electronic processor is configured to apply the beam pattern to an audio signal received by the microphone array.
Abstract:
Methods and devices for connecting an accessory device to a connector port of a mobile communication device and automatically detecting an operational mode of the connector port are provided. The method includes implementing a USB Type-C device detection at an electronic processor of the mobile communication device and monitoring a first and second pin of the connector port for pull-up and pull-down signals from a connected accessory. The method also includes interrupting the USB Type-C device detection when a pull-down signal is detected and determining whether an accessory signal is detected at a third pin of the connector port. The method also includes implementing a LMR accessory detection when the accessory signal is detected and completing the USB Type-C device detection when the accessory signal is not detected.
Abstract:
A camera flash system and method for the same. In one example, the system includes a camera including an image sensor, a plurality of lights, and an electronic processor. The camera is configured to capture an image frame. Each of the lights is configured to illuminate a region within the image frame. The electronic processor is configured to capture via the camera, while modulating an output of the plurality of lights, a first image frame and determine, using the image sensor, an object of interest within the first image frame. The electronic processor is further configured to identify a region of interest in which the object of interest is located based on the first image frame, identify, based on the region of interest, a subset of lights from the plurality of lights, and activate the subset of lights.
Abstract:
System and method for controlling incoming acoustic signals at a portable accessory communication system provides improved management of noise levels. A plurality of acoustic microphone arrays (120), formed of pairs of acoustic microphones, and a single vibration microphone (130) are enabled by pressing a push-to-talk (PTT) button (108). An audio signal is input to the acoustic microphone arrays and a vibration signal is input to the single vibration microphone. The audio signal is detected and compared to the vibration signal to determine a high noise environment. The single vibration microphone (130) controls beam formation of the acoustic microphone arrays in high noise environments based on predetermined noise thresholds being exceeded and selecting an optimum acoustic microphone pair from the arrays to direct a null targeted at the noise source.