Abstract:
An apparatus for detecting spectrum inversion includes a different correlator and a determining module. The differential correlator performs an odd-order differential correlation on an input signal and a known signal to generate a differential correlation result. When the input signal is determined as corresponding to a target signal of the known signal, the determining module detects spectrum inversion in the input signal according to the phase of the differential correlation result.
Abstract:
An error correction apparatus for a digital signal received by a signal reception terminal includes two error correction modules. The first error correction module performs first error correction on an input signal to generate an intermediate signal satisfying a termination condition. The second error correction module receives and selectively performs second error correction on the intermediate signal to generate a corrected signal. The termination condition is associated with a maximum error correction capability of the second error correction.
Abstract:
An error correction apparatus for a digital signal received by a signal reception terminal includes two error correction modules. The first error correction module performs first error correction on an input signal to generate an intermediate signal satisfying a termination condition. The second error correction module receives and selectively performs second error correction on the intermediate signal to generate a corrected signal. The termination condition is associated with a maximum error correction capability of the second error correction.
Abstract:
A digital broadcasting receiving system is provided. A receiving module receives an M number of symbols each carrying an N number of subcarriers of a control signal. A converting module performs FFT on respective kth subcarriers of an ith symbol and an (i+1)th symbol to generate an (i, k)th converted value and an (i+1, k)th converted value. A demodulating module performs differential demodulation on the (i, k)th and (i+1, k)th converted values to generate an (i, k)th demodulation value. A combining module soft-combines the (i, 1)th demodulation value through the (i, N)th demodulation value to generate an ith prediction value corresponding to the ith symbol. A determining module identifies a synchronization segment in the control signal according to the 1st prediction value to the (M−1)th prediction value.
Abstract:
An apparatus for estimating channel effects is provided. A receiving module receives first data and first reference information arriving in a first time period, second data and second reference data arriving in a second time period, and third data and third reference data arriving in a third time period. An estimation module estimates channel effects corresponding to the first and third data, and the first, second and third reference data, respectively. A coefficient calculation module performs a Wiener filter coefficient calculation on the channel effects corresponding to the first, second and third reference data to generate a set of time-domain interpolation coefficients. An interpolation module interpolates the channel effects corresponding to the first third data according to the set of time-domain interpolation coefficients to generate a channel effect corresponding to the second data.