摘要:
The present invention discloses a novel method of making high performance mixed matrix membranes (MMMs) using stabilized concentrated suspensions of solvents, uniformly dispersed polymer stabilized molecular sieves, and at least two different types of polymers as the continuous blend polymer matrix. MMMs as dense films or asymmetric flat sheet or hollow fiber membranes fabricated by the method described in the current invention exhibit significantly enhanced permeation performance for separations over the polymer membranes made from the continuous blend polymer matrix. MMMs of the present invention are suitable for a wide range of gas, vapor, and liquid separations such as alcohol/water, CO2/CH4, H2/CH4, O2/N2, CO2/N2, olefin/paraffin, iso/normal paraffins, and other light gases separations.
摘要:
The present invention discloses a new type of high performance polymer membranes prepared from aromatic polyimide membranes by thermal treating and crosslinking and methods for making and using these membranes. The polymer membranes were prepared from aromatic polyimide membranes by thermal treating under inert atmosphere followed by crosslinking preferably by using a UV radiation source. The aromatic polyimide membranes were made from aromatic polyimide polymers comprising both pendent hydroxy functional groups ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone. The membranes showed significantly improved selectivity and permeability for gas separations compared to the aromatic polyimide membranes without any treatment. The membranes can be fabricated into any convenient geometry and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used for other applications such as for catalysis and fuel cell applications.
摘要:
The present invention discloses a blends of an aromatic polyimide polymer and a polymer containing aromatic sulfonic acid groups that can be converted into polybenzoxazole (PBO) membranes for gas, vapor, and liquid separations. The PBO membranes that were prepared by thermal treating aromatic polyimide membranes containing between 0.05 and 20 wt-% of a poly(styrene sulfonic acid) polymer. These polymers showed up to 95% improvement in selectivity for CO2/CH4 and H2/CH4 separations compared to PBO membranes prepared from corresponding aromatic polyimide membranes without a poly(styrene sulfonic acid) polymer.
摘要:
The present invention discloses a new type of high performance polymer membranes derived from aromatic polyimide membranes and methods for making and using these membranes. The polymer membranes described in the present invention were derived from aromatic polyimide membranes by crosslinking followed by thermal treating. The aromatic polyimide membranes were made from aromatic polyimide polymers comprising both pendent hydroxy functional groups ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone. The high performance polymer membranes showed significantly improved permeability for gas separations compared to the aromatic polyimide membranes without any treatment. The high performance polymer membranes also showed significantly improved selectivity for gas separations compared to the thermal-treated but non-UV-crosslinked aromatic polyimide membranes. The high performance polymer membranes of the present invention are suitable for liquid, gas, and vapor separations, as well as for catalysis and fuel cell applications.
摘要:
The present invention discloses a new type of high performance polymer membranes prepared from aromatic polyimide membranes by thermal treating and crosslinking and methods for making and using these membranes. The polymer membranes were prepared from aromatic polyimide membranes by thermal treating under inert atmosphere followed by crosslinking preferably by using a UV radiation source. The aromatic polyimide membranes were made from aromatic polyimide polymers comprising both pendent hydroxy functional groups ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone. The membranes showed significantly improved selectivity and permeability for gas separations compared to the aromatic polyimide membranes without any treatment. The membranes can be fabricated into any convenient geometry and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used for other applications such as for catalysis and fuel cell applications.
摘要:
The present invention the manufacture of a membrane for gas and liquid separations in which a polymer layer is applied directly to a tricot fabric instead of the conventional cloth or glass or metal substrate.
摘要:
The present invention discloses new types of polybenzoxazole-based mixed matrix membranes and methods for making and using these membranes. The polybenzoxazole-based mixed matrix membranes are prepared by fabricating a polyimide-based mixed matrix membrane by dispersing molecular sieve particles in a continuous aromatic polyimide matrix with pendent hydroxyl groups ortho to the heterocyclic imide nitrogen; and then converting the polyimide-based mixed matrix membrane to a polybenzoxazole-based mixed matrix membrane by heating between 200° and 600° C. under inert atmosphere or vacuum. The polybenzoxazole-based mixed matrix membranes of the present invention can be fabricated into any convenient geometry such as flat sheet (or spiral wound), tube, hollow fiber, or thin film composite. These polybenzoxazole-based mixed matrix membranes exhibit high thermal stability, significantly higher selectivity than the neat polybenzoxazole polymer membranes, and much higher permeability than traditional mixed matrix membranes.
摘要:
The present invention discloses high performance polybenzoxazole membranes prepared from aromatic poly(o-hydroxy amide) membranes by thermal cyclization and a method for using these membranes. The polybenzoxazole membranes were prepared by thermal treating aromatic poly(o-hydroxy amide) membranes in a temperature range of 200° to 550° C. under inert atmosphere. The aromatic poly(o-hydroxy amide) membranes used for making the polybenzoxazole membranes were prepared from aromatic poly(o-hydroxy amide) polymers comprising pendent phenolic hydroxyl groups ortho to the amide nitrogen in the polymer backbone. In some embodiments of the invention, the polybenzoxazole membranes may be subjected to an additional crosslinking step to increase the selectivity of the membranes. These polybenzoxazole membranes showed significantly improved permeability for gas separations compared to the precursor aromatic poly(o-hydroxy amide) membranes and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used in catalysis and fuel cells.
摘要:
The present invention discloses a novel method to improve the selectivities of polybenzoxazole (PBO) membranes prepared from aromatic polyimide membranes for gas, vapor, and liquid separations. The PBO membranes that were prepared by thermal treating aromatic polyimide membranes containing between 0.05 and 20 wt-% of a poly(styrene sulfonic acid) polymer. These polymers showed up to 95% improvement in selectivity for CO2/CH4 and H2/CH4 separations compared to PBO membranes prepared from corresponding aromatic polyimide membranes without a poly(styrene sulfonic acid) polymer.
摘要:
The present invention discloses a novel method of making high performance mixed matrix membranes (MMMs) using stabilized concentrated suspensions of solvents, uniformly dispersed polymer stabilized molecular sieves, and at least two different types of polymers as the continuous blend polymer matrix. MMMs as dense films or asymmetric flat sheet or hollow fiber membranes fabricated by the method described in the current invention exhibit significantly enhanced permeation performance for separations over the polymer membranes made from the continuous blend polymer matrix. MMMs of the present invention are suitable for a wide range of gas, vapor, and liquid separations such as alcohol/water, CO2/CH4, H2/CH4, O2/N2, CO2/N2, olefin/paraffin, iso/normal paraffins, and other light gases separations.