摘要:
On a TFT substrate, gate bus lines, data bus lines, picture element electrodes, and the like are formed, and further a first alignment film is formed of polyimide or the like. On an opposing substrate, black matrices, common electrodes, and the like formed; and further column-like spacers are formed at positions facing regions where the gate bus lines and the data bus lines cross. A second alignment film covering the surfaces of the common electrode and the spacers is formed. However, the first and second alignment films are maintained semi-setting. Thereafter, the TFT substrate and the opposing substrate are overlapped, and heated at high temperature under pressure; and the second alignment film on the apexes of the spacers and the first alignment film on the TFT substrate side are joined.
摘要:
The liquid crystal display comprises a first substrate 2 including a gate bus line 12a, a data bus line 28, a thin film transistor 18 formed near an intersection between the gate bus line 12a and the data bus line 28, and a pixel electrode 52 including a transmission electrode 32a electrically connected to the thin film transistor 18 and a reflection electrode 48b electrically connected to the transmission electrode 32a; a second substrate 4 opposed to the first substrate 2 and including an opposed electrode 68 opposed to the pixel electrode 52; and a liquid crystal layer 6 sealed between the first substrate 2 and the second substrate 4. The reflection electrode 48b is formed over another gate bus line 12b which is different from the gate bus line 12a, with an insulation layer 40 formed therebetween. The decrease of a voltage applied between the reflection electrode 48b and the opposed electrode 68 can be prevented while the space which can be not used as the transmission region can be utilized. Thus, the area decrease of the transmission part is prevented while the area of the reflection part can be increased, whereby a reflective transmission type liquid crystal display of higher display quality can be provided.
摘要:
It is an object of the invention to provide a substrate for a liquid crystal display, a liquid crystal display having the same, and a method of manufacturing the same which make it possible to provide a display having high luminance and preferable display characteristics to be used in display sections of information apparatuses and the like. Each pixel is defined by gate bus lines extending in the horizontal direction and drain bus lines extending in the vertical direction. TFTs are formed in the vicinity of intersections between the bus lines, and resin overlap sections for shielding the TFTs from light are formed above the same. No black matrix is formed on a common electrode substrate which is provided in a face-to-face relationship with a TFT substrate, and the bus lines and the resin overlap sections formed on the TFT substrate function as a black matrix.
摘要:
The invention relates to a substrate for use in a liquid crystal display of a CF-on-TFT structure in which a color filter is formed on the side of an array substrate in which a switching element is formed, and has an object to provide a substrate for use in a liquid crystal display, which enables simplification of a manufacturing process typified by a photolithography process and has high reliability. The substrate for use in the liquid crystal display is constructed to include external connection terminals which include first terminal electrodes electrically connected to gate bus lines led out from a plurality of pixel regions arranged on a glass substrate in a matrix form, second terminal electrodes formed of forming material of a pixel electrode and directly on the glass substrate, and electrode coupling regions for electrically connecting the first and the second terminal electrodes, and which electrically connect an external circuit and the gate bus lines.
摘要:
A liquid crystal display device including a common electrode on a first substrate, a pixel electrode on a second substrate, and a liquid crystal layer between the first and second substrates. The device also include first and second alignment control structures formed, respectively, on the first and second substrates, for regulating azimuths of orientations of the liquid crystal when a voltage is applied thereto. The first and second alignment control structures each include a first line portion (extending in a first direction) and a second line portion (extending in a second direction, which is different from the first direction). The pixel electrode includes an edge extending in a direction different from both the first and second directions.
摘要:
It is an object of the invention to provide a substrate for a liquid crystal display, a liquid crystal display having the same, and a method of manufacturing the same which make it possible to provide a display having high luminance and preferable display characteristics to be used in display sections of information apparatuses and the like. Each pixel is defined by gate bus lines extending in the horizontal direction and drain bus lines extending in the vertical direction. TFTs are formed in the vicinity of intersections between the bus lines, and resin overlap sections for shielding the TFTs from light are formed above the same. No black matrix is formed on a common electrode substrate which is provided in a face-to-face relationship with a TFT substrate, and the bus lines and the resin overlap sections formed on the TFT substrate function as a black matrix.
摘要:
A vertically alignment mode liquid crystal display device having an improved viewing angle characteristic is disclosed. The disclosed liquid crystal display device uses a liquid crystal having a negative anisotropic dielectric constant, and orientations of the liquid crystal are vertical to substrates when no voltage being applied, almost horizontal when a predetermined voltage is applied, and oblique when an intermediate voltage is applied. At least one of the substrates includes a structure as domain regulating means, and inclined surfaces of the structure operate as a trigger to regulate azimuths of the oblique orientations of the liquid crystal when the intermediate voltage is applied.
摘要:
A substrate for use in a liquid crystal display, including an insulating substrate cooperating with an oppositely arranged opposite substrate to hold a liquid crystal. A plurality of pixel regions are arranged on the insulating substrate in a matrix form, in each of which a switching element is formed. At least one resin color filter layer is formed on the pixel regions to cover the switching element. Additionally, at least one layer of the resin color filter layers of the plural colors has a cruciform-shaped pattern protruding to cover the switching elements of neighboring pixels when viewed in a direction of a normal of a substrate surface.
摘要:
A vertically alignment mode liquid crystal display device having an improved viewing angle characteristic is disclosed. The disclosed liquid crystal display device uses a liquid crystal having a negative anisotropic dielectric constant, and orientations of the liquid crystal are vertical to substrates when no voltage being applied, almost horizontal when a predetermined voltage is applied, and oblique when an intermediate voltage is applied. At least one of the substrates includes a structure as domain regulating means, and inclined surfaces of the structure operate as a trigger to regulate azimuths of the oblique orientations of the liquid crystal when the intermediate voltage is applied.
摘要:
There is provided an MVA type liquid crystal display device having high brightness and excellent display quality. The liquid crystal display device includes a pair of substrates disposed to be opposite to each other, a liquid crystal sealed between the pair of substrates, plural pixel areas each including a pixel electrode 16a formed on one of the substrates and a pixel electrode 16b separated from the pixel electrode 16a, a TFT 20 disposed in each of the pixel areas and including a source electrode 22 electrically connected to the pixel electrode 16a, a linear projection 42 formed on the other substrate and to regulate alignment of the liquid crystal, and a control capacitance section to capacity couple the source electrode 22 and the pixel electrode 16b and including a control capacitance electrode 33 which is electrically connected to the source electrode 22, is opposite to at least part of the pixel electrode 16b through an insulating film, and at least part of which is disposed to overlap with the linear projection 42 when viewed perpendicularly to a substrate surface and extends along the linear projection 42.