摘要:
The present invention relates to a process for the preparation of a silicon on insulator wafer. The process includes implanting oxygen into a single crystal silicon wafer which is substantially free of agglomerated vacancy-type defects. The present invention further relates to a process for the preparation of a silicon on insulator wafer wherein oxygen is implanted into a single crystal silicon wafer having an axially symmetric region in which there is a predominant intrinsic point defect which is substantially free of agglomerated intrinsic point defects. Additionally, the present invention relates to a silicon on insulator (“SOI”) structure in which the device layer is substantially free of agglomerated intrinsic point defects.
摘要:
A process for heat-treating a single crystal silicon segment to influence the profile of minority carrier recombination centers in the segment. The segment has a front surface, a back surface, and a central plane between the front and back surfaces. In the process, the segment is subjected to a heat-treatment to form crystal lattice vacancies, the vacancies being formed in the bulk of the silicon. The segment is then cooled from the temperature of said heat treatment at a rate which allows some, but not all, of the crystal lattice vacancies to diffuse to the front surface to produce a segment having a vacancy concentration profile in which the peak density is at or near the central plane with the concentration generally decreasing in the direction of the front surface of the segment. Platinum atoms are then in-diffused into the silicon matrix such that the resulting platinum concentration profile is substantially related to the concentration profile of the crystal lattice vacancies.
摘要:
A process for the preparation of a silicon single ingot in accordance with the Czochralski method. The process for growing the single crystal silicon ingot comprises controlling (i) a growth velocity, v, (ii) an average axial temperature gradient, G0, during the growth of a constant diameter portion of the crystal over a temperature range from solidification to a temperature of no less than about 1325° C. to initially produce in the constant diameter portion of the ingot a series of predominant intrinsic point defects including vacancy dominated regions and silicon self interstitial dominated regions, alternating along the axis, and cooling the regions from the temperature of solidification at a rate which allows silicon self-interstitial atoms to diffuse radially to the lateral surface and to diffuse axially to vacancy dominated regions to reduce the concentration intrinsic point defects in each region.
摘要:
Process for controlling the density of oxygen precipitate nucleation centers in single crystal silicon. In the process, the single crystal silicon is annealed at a temperature of at least about 350.degree. C. to cause the formation of oxygen precipitate nucleation centers in the single crystal silicon. During the annealing step, the single crystal silicon is heated (or cooled) to achieve a first temperature, T.sub.1, which is between about 350.degree. C. and about 500.degree. C. The temperature is then increased from T.sub.1 to a second temperature, T.sub.2, which is between about 500.degree. C. and about 750.degree. C. with the average rate of temperature increase from T.sub.1 to T.sub.2 being less than about 25.degree. C. per minute. The annealing is terminated at a point in time when the oxygen precipitate nucleation centers are capable of being dissolved by heat-treating the silicon at a temperature not in excess of about 1150.degree. C.
摘要:
A process for increasing the minority carrier recombination lifetime in a silicon body contaminated with transition metals, expecially iron. The silicon body is stored at a temperature and for a period sufficient to cause metal to diffuse from the bulk of the silicon body to the surface of the silicon body to measurably increase the minority carrier recombination lifetime.
摘要:
A method of assessment of semiconductor wafers by infra-red scanning microscopy illuminates a wafer with infra-red light through its polished face and detects light emanating from the same face by back-scattering from particles within the specimen, the light being back-scattered through an angle of more than 90.degree.. Measures are taken to reduce the effects of specular reflection from the surface, which measures may include the use of stop/mirror arrangements and/or the use of an aperture plate for confocal discrimination.
摘要:
A process for the preparation of low resistivity arsensic or phosphorous doped (N+/N++) silicon wafers which, during the heat treatment cycles of essentially any arbitrary electronic device manufacturing process, reliably form oxygen precipitates.
摘要翻译:一种用于制备低电阻率砷或磷掺杂(N + / N ++)硅晶片的方法,其在基本上任意的电子器件制造工艺的热处理循环期间可靠地形成氧沉淀物。
摘要:
The present invention is directed to a process for producing a silicon on insulator (SOI) structure having intrinsic gettering, wherein a silicon substrate is subjected to an ideal precipitating wafer heat treatment which enables the substrate, during the heat treatment cycles of essentially any arbitrary electronic device manufacturing process to form an ideal, non-uniform depth distribution of oxygen precipitates, and wherein a dielectric layer is formed beneath the surface of the wafer by implanting oxygen or nitrogen ions, or molecular oxygen, beneath the surface and annealing the wafer. Additionally, the silicon wafer may initially include an epitaxial layer, or an epitaxial layer may be deposited on the substrate during the process of the present invention.
摘要:
The present invention is directed to a single crystal Czochralski-type silicon wafer, and a process for the preparation thereof, which has a non-uniform distribution of stabilized oxygen precipitate nucleation centers therein. Specifically, the peak concentration is located in the wafer bulk and a precipitate-free zone extends inward from a surface.
摘要:
A silicon wafer containing oxygen precipitate nucleation centers (or oxygen precipitates) and having a first face, a second face, and a central plane equidistant between the first and second faces. The nucleation centers (or oxygen precipitates) have a non-uniform distribution between the first and second faces with a maximum density of the nucleation centers (or oxygen precipitates) being in a region which is between the first face and the central plane and nearer to the first face than the central plane. The density of the nucleation centers (or oxygen precipitates) increases from the first face to the region of maximum density and decreasing from the region of maximum density to the central plane.