摘要:
A component comprising a silicon-based substrate and a braze-based protective coating disposed on the silicon-based substrate. The braze-based coating comprises a brazed layer, wherein the brazed layer comprises at least one intermetallic compound. A scale layer may be formed on the brazed layer. An environmental barrier coating may be disposed directly on the brazed layer or directly on the scale layer. A thermal barrier coating may be disposed on the environmental barrier coating. Methods for making a Si-based component having a braze-based protective coating are also disclosed.
摘要:
The present invention provides methods and materials for use in applying a coating on a surface of a magnesium component. The method includes the steps of: accelerating a coating powder to a velocity of between about 500 to about 1200 meters/second, wherein the coating powder comprises a material selected from the group consisting of aluminum, aluminum alloys, titanium, titanium alloys, and composites; directing the coating powder through a convergent-divergent nozzle onto the surface of the magnesium component; and forming a coating on the surface of the magnesium component so as to substantially cover the surface of the magnesium component. The coating thickness may be between approximately 0.1 to approximately 1.0 mm.
摘要:
A method for coating a surface of a metal component comprises the steps of cold gas-dynamic spraying a powder material on the metal component surface to form a coating, the powder material being sufficiently heated to impact the metal component surface at between about 30% and about 70% of the powder material's melting temperature in kelvins. Another method for coating a surface of a metal component using a powder material comprises the steps of heating the metal component surface to between about 30% and about 70% of the substrate's melting temperature, and then of the powder material's melting temperature in kelvins, and cold gas-dynamic spraying the powder material on the metal component surface to form a coating.
摘要:
The present invention provides methods and materials for use in applying a coating on a surface of a magnesium component. The method includes the steps of: accelerating a coating powder to a velocity of between about 500 to about 1200 meters/second, wherein the coating powder comprises a material selected from the group consisting of aluminum, aluminum alloys, titanium, titanium alloys, and composites; directing the coating powder through a convergent-divergent nozzle onto the surface of the magnesium component; and forming a coating on the surface of the magnesium component so as to substantially cover the surface of the magnesium component. The coating thickness may be between approximately 0.1 to approximately 1.0 mm.
摘要:
A method for joining a first component surface to a ceramic component surface includes cold gas-dynamic spraying a first metal powder onto the ceramic component surface to form a first metal coating. The first component surface is then bonded to the metal coating on the ceramic component surface. The bonding step may be a thermal process such as a brazing process. A mechanical bond may also be formed by an interference fitting such as press or shrink fitting.
摘要:
A turbine engine component includes an electron beam-physical vapor deposition thermal barrier coating covering at least a portion of a substrate. The thermal barrier coating includes an inner layer having a columnar-grained microstructure with inter-columnar gap porosity. The inner layer includes a stabilized ceramic material. The thermal barrier coating also includes a substantially non-porous outer layer, covering the inner layer and including the stabilized ceramic material. The outer layer is deposited with continuous line-of-sight exposure to the vapor source under oxygen deficient conditions. The outer layer may further comprise a dopant oxide that is more readily reducible than the stabilized ceramic material. During deposition, the outer layer may also have an oxygen deficient stoichiometry with respect to the inner layer. Oxygen stoichiometry in the outer layer may be restored by exposure of the coated component to an oxidizing environment.
摘要:
Platinum containing coatings for corrosion and oxidation protection of a substrate, and platinum electrodeposition methods for coating a substrate. The coating may comprise platinum and at least one supplementary constituent, and the method may involve co-electrodeposition of platinum and the supplementary constituent from a single electrolyte composition. The supplementary constituent may comprise chromium, an oxidation protective reactive element, or an alloy of chromium with a reactive element. Components protected by such coatings are also disclosed.
摘要:
A plurality of powders is admixed to form a substantially homogenous powder mixture comprising each of the alloy elements. At least one of the powders consists essentially of a substantially pure elemental metal. The substantially homogenous powder mixture is cold gas-dynamic sprayed on the substrate to form a coating of the alloy elements. The coating is then heated until the alloy elements inter-diffuse and form the alloy. In an exemplary embodiment, the substantially homogenous powder mixture includes stoichiometric amounts of each of the alloy elements, and each of the powders consists essentially of a substantially pure form of one of the alloy elements.
摘要:
A method is provided for forming a graded coating on a surface of a substrate. The method comprises the step of cold gas-dynamic spraying powder mixtures on the substrate surface to form the graded coating thereon. The method does not distort the substrate and does not require the use of an apparatus that needs to be stopped and re-started each time the composition of the graded coating changes. Moreover, the method is generally inexpensive, efficient, and yields high quality graded coatings.
摘要:
A coating for spark plugs and engine parts is resistant to fouling. The coating may be applied to the spark plug or engine part by dipping the part in a sol gel solution, ensuring it wets the part, and extracting it at a slow, controlled rate. As the part is allowed to dry, the sol gel reacts with moisture in the air to form a thin oxide film. Unlike conventional sol gel applications, which apply the oxide directly to the part, the present invention may form an oxide coating, in situ, while drying in place on the part.