Apparatus and method for producing Mg(2)Si(1-x)Sn(x) polycrystal
    3.
    发明授权
    Apparatus and method for producing Mg(2)Si(1-x)Sn(x) polycrystal 有权
    制备Mg(2)Si(1-x)Sn(x)多晶的装置和方法

    公开(公告)号:US09181607B2

    公开(公告)日:2015-11-10

    申请号:US13634937

    申请日:2011-03-16

    摘要: Provided are an apparatus and a method for producing an inexpensive Mg2Si1-xSnx polycrystal that can be effectively used as thermoelectric conversion materials that can be expected to have a high performance index by doping if necessary.A problem can be solved by a production apparatus 1 for producing an Mg2Si1-xSnx polycrystal including at least a reaction vessel for synthesis of Mg2Si1-xSnx represented by the following formula (1) by filling a mixture of Mg particles and Si particles or Mg particles and Sn particles, or Mg—Si alloy particles or Mg—Sn alloy particles as a main starting material 2 to cause a reaction; an inorganic fiber layer 6 which is fixedly provided above the starting material 2 filled into the reaction vessel 3 and has air permeability, which can be caused to disappear by a product 7 generated by chemical reaction of vaporized Mg with oxygen during the synthesis of the polycrystal 12; heating means 8 for heating the reaction vessel 3; and control means 9 for controlling the heating temperature and heating time of the reaction vessel 3, wherein Mg2Si1-xSnx  (1) (in the formula (1), x is 0 to 1).

    摘要翻译: 提供了一种用于生产便宜的Mg 2 Si 1-x Sn x多晶的装置和方法,其可以有效地用作热电转换材料,如果需要,可以预期通过掺杂具有高的性能指标。 通过填充Mg粒子和Si粒子或Mg粒子的混合物的至少包括用于合成由下式(1)表示的Mg 2 Si 1-x Sn x的反应容器的Mg2Si1-xSnx多晶体的制造装置1可以解决问题。 和Sn粒子,Mg-Si合金粒子或Mg-Sn合金粒子作为主要原料2引起反应; 无机纤维层6,其固定地设置在填充到反应容器3中的起始材料2的上方并具有透气性,其可以在多晶合成期间被蒸发的Mg与氧化学反应产生的产物7消失 12; 用于加热反应容器3的加热装置8; 以及用于控制反应容器3的加热温度和加热时间的控制装置9,其中Mg2Si1-xSnx(1)(在式(1)中,x为0至1)。

    METHODS AND SYSTEMS FOR REDUCING SILICA RECESSION IN SILICON-CONTAINING MATERIALS
    5.
    发明申请
    METHODS AND SYSTEMS FOR REDUCING SILICA RECESSION IN SILICON-CONTAINING MATERIALS 有权
    用于减少含硅材料中二氧化硅含量的方法和系统

    公开(公告)号:US20140165419A1

    公开(公告)日:2014-06-19

    申请号:US13717773

    申请日:2012-12-18

    IPC分类号: F26B23/02

    摘要: The present disclosure relates to methods and systems for reducing silica recession of silicon-containing ceramics or silicon-containing ceramic composites, particularly those exposed to a combustion gas or to combustion gas environments, including those exposed to high temperature combustion gas environments. The methods and systems involve silicon-doping of compressed air and/or removal of moisture from compressed air prior to co-mingling the treated compressed air with the combustion gas to which the silicon-containing ceramics or silicon-containing ceramic composites are exposed.

    摘要翻译: 本公开内容涉及用于减少含硅陶瓷或含硅陶瓷复合材料的二氧化硅凹陷的方法和系统,特别是暴露于燃烧气体或燃烧气体环境中的那些,包括暴露于高温燃烧气体环境的那些。 在将经处理的压缩空气与含硅陶瓷或含硅陶瓷复合材料暴露于其中的燃烧气体共混之前,该方法和系统涉及压缩空气的硅掺杂和/或从压缩空气中去除水分。

    Method for producing a device for direct thermoelectric energy conversion
    10.
    发明授权
    Method for producing a device for direct thermoelectric energy conversion 失效
    直接热电能转换装置的制造方法

    公开(公告)号:US07166796B2

    公开(公告)日:2007-01-23

    申请号:US10235230

    申请日:2002-09-05

    IPC分类号: H01L35/20 H01L35/14

    摘要: In devices used for the direct conversion of heat into electricity, or vice versa, known in the art as thermoelectric power generators, thermoelectric refrigerators and thermoelectric heat pumps, the efficiency of energy conversion and/or coefficient of performance have been considerably lower than those of conventional reciprocating or rotary, heat engines and/or vapor-compression systems, employing certain refrigerants. The energy conversion efficiency of power generating devices, for example, aside from the hot and cold junction temperatures, also depends on a parameter known in the art as the thermoelectric figure of merit Z=S2σ/k, where S is the thermoelectric power, σ is the electrical conductivity and k is the thermal conductivity, of the material that constitutes the p-type, and/or n-type, thermoelements, or branches, of the said devices. In order to achieve a considerable increase in the energy conversion efficiency, a thermoelectric figure of merit of the order of 10−2 K−1, or more, is needed. It is reasonably expected that such an order of magnitude, for the figure of merit, can be realized with a composition of matter, comprising magnesium, silicon, lead and barium, and optionally comprising one, or more, additional doping materials.

    摘要翻译: 在用于将热量直接转换成电力的装置中,或反之亦然(本领域中已知的热电发电机,热电致冷器和热电热泵),能量转换效率和/或性能系数已经远远低于 常规往复式或旋转式,热力发动机和/或蒸汽压缩系统,采用某些制冷剂。 发热装置的能量转换效率,例如除了冷热结温之外,还取决于本领域已知的参数,因为热电品质因数Z = S 2 Sigma / k ,其中S是热电功率,sigma是构成所述器件的p型和/或n型,热电子元件或分支的材料的电导率,k是热导率。 为了实现能量转换效率的显着提高,需要大约等于或大于10-2的热电特性值。 合理预期,可以通过包含镁,硅,铅和钡的物质组成并且任选地包含一种或多种另外的掺杂材料来实现品质因数的这样一个数量级。