摘要:
Embodiment of the invention improve the productivity of a magnetic disk drive that controls the flying height of a magnetic head by use of a heater. According to an embodiment, in a method for manufacturing a magnetic disk drive that writes/reads information to/from a magnetic disk medium by use of a magnetic head including a heater adapted to control the flying height, the read and write performance of the magnetic head is tested; a heating condition used at the time of heating by the heater is determined on the basis of the test results; and a control parameter that specifies the amount of heating by the heater in the determined heating condition is determined.
摘要:
Embodiments of the invention improve the power consumption and response speed of a heater for the gap flying height (hg) adjustment, to minimize an influence that the heater has on a life of a read element, and to provide a heater having resistance lines reduced in breaking and ensuring higher reliability. In one embodiment, a read/write element is formed near an air bearing surface (ABS) on a slider, and the circumference of the read/write element is filled with alumina. The read/write element includes an upper magnetic pole piece, a lower magnetic pole piece, a coil, and a resist filling around the coil, and a read element (MR) for performing reading, and an upper shield and lower shield for protecting the read element from an external magnetic field. A heater for adjusting the flying height is provided between the slider and the read/write element but near the read/write element. A temperature gradient relaxing material having a thermal conductivity higher than that of the heater and that of a material (alumina) filling around the heater is formed near the heater.
摘要:
Embodiments of the present invention provide a process that monitors a magnetic playback signal while gradually increasing an electricity supply amount for a heater to thereby determine contact between a magnetic head slider and a magnetic disk medium. According to one embodiment, after components for configuring a magnetic recording/playback portion are assembled into a housing, magnetic information is played back on a specific track of a magnetic disk medium by using a playback element while gradually increasing an electricity supply amount for a heater of a magnetic head slider. An amplitude of a playback signal is measured at a plurality of portions along a circumferential direction of the track. Contact between the magnetic head slider and the magnetic disk medium is detected in accordance with an increase in variation in the measured amplitude. Then, a value obtained by subtracting an predetermined value of an electricity amount from an electricity amount in the event of detection of the contact is stored (set) as an appropriate electricity amount for the magnetic head slider into a storage portion.
摘要:
Various embodiments of the present invention pertain to enabling location specific burnishing of a disk. According to one embodiment, the smoothness of a disk is evaluated by gliding over a disk to determine if there is an asperity on the disk. If there is an asperity on the disk, a location of the asperity is stored to enable location specific burnishing of the disk.
摘要:
A system for selectively sensing and removing asperities from hard disk drive disk is disclosed. The system includes a test stand supporting the disk, the test stand having at least one suspension for flying over a surface of the disk. The system also includes a glide pad coupled to the at least one suspension for flying over the surface and locating asperities. A PZT sensor is coupled to the glide pad for sensing and mapping asperities on the surface of the disk. A burnish pad is coupled to the at least one suspension for wearing-away sensed and mapped asperities on the surface of the disk and a thermal fly height controller is coupled to the burnish pad for protruding the burnish pad when it is proximate to one of the mapped asperities for facilitating the wearing-away of the mapped asperity.
摘要:
Embodiments of the invention appropriately control the flying height of a magnetic head slider as necessary without making the magnetic head slider touch the magnetic disk. In one embodiment, when a magnetic disk drive is started, the level of electric power predefined for the ordinary temperature (room temperature) is read in from the internal memory of an MPU. A temperature sensor measures the internal temperature of the magnetic disk drive and sends it to the MPU. According to the temperature sent from the temperature sensor, the MPU calculates the level of electric power which should be applied to a flying height adjustment structure. According to the calculated electric power, the MPU increases or decreases the electric power applied to the flying height adjustment structure. At a flying height controlled (corrected) by the flying height adjustment structure, a magnetic head slider performs read/write on a magnetic disk.
摘要:
Embodiment of the invention improve the productivity of a magnetic disk drive that controls the flying height of a magnetic head by use of a heater. According to an embodiment, in a method for manufacturing a magnetic disk drive that writes/reads information to/from a magnetic disk medium by use of a magnetic head including a heater adapted to control the flying height, the read and write performance of the magnetic head is tested; a heating condition used at the time of heating by the heater is determined on the basis of the test results; and a control parameter that specifies the amount of heating by the heater in the determined heating condition is determined.
摘要:
Embodiments of the present invention help to improve the cost, mountability, and reliability of a magnetic disk drive that regulates a fly height of a magnetic head slider correspondingly to the operating altitude of the drive by using an air pressure sensor and a heater. According to one embodiment, a preamplifier is a semiconductor chip formed by three-dimensionally laminating thin film circuits on a bulk silicon wafer. An air pressure sensor is integrally formed on the semiconductor chip through a semiconductor process. The air pressure sensor is configured to include an isolating cavity, a diaphragm that deflecting in response to a change in a pressure difference between the isolating cavity and the outside, and lower and upper electrodes and for detecting variation in electrostatic capacitance. The preamplifier including the air pressure sensor integrally formed therein is attached to a flexible printed cable (FPC) to oppose the FPC. A through-hole is provided in a portion opposite the air pressure sensor of the FPC to introduce air pressure in an operating environment into a diaphragm of the air pressure sensor.
摘要:
Embodiments in accordance with the present invention allow a magnetic disk drive to achieve noise reduction and low power consumption through rotation at a low speed and a high transfer rate through rotation at a high speed while allowing reliability to be maintained and achieving an improved recording density. An embodiment of a magnetic disk drive in accordance with the present invention includes, a magnetic disk medium driven at a plurality of rotational speeds, a magnetic head for recording and reproducing data in and from the magnetic disk medium, a heater for controlling a flying height of the magnetic head, and a control unit for controlling the current to the heater, and in that the control unit controls the current to the heater. The control unit controls the current to the heater according to the plurality of rotational speeds.
摘要:
A method for selectively sensing and removing asperities from the surface of hard disk drive media is disclosed. A thermally controlled flying height burnish slider is flown on a test stand with its thermal flying height control deactivated. The burnish slider flies at a nominal flying height over the surface of the media to remove any existing loose particles from the surface. A glide slider coupled to a PZT sensor is then flown over the surface of the media, the PZT sensor head mapping locations of any asperities on the surface of the media. The thermal flying height controlled burnish slider is next flown over the surface of the media with the thermal flying height control activated. The thermal flying height control is actuated when a mapped location of an asperity on the surface is proximate to the burnish slider, causing the burnish slider to protrude, wearing off the asperity.