摘要:
The film is composed of an alternate lamination of unit iron layers and unit layers of ferromagnetic iron compound such as Fe.sub.3 Al, Fe.sub.3 Si, Fe.sub.3 Ge and Fe.sub.3 Ga. The thickness of the both unit layers is less than 70 .ANG.. The film has a high saturation magnetization more than 230 emu/g and a high thermal stability so that the film is particularly applicable to a magnetic head core.
摘要:
Characteristics of a magnetic material are improved without using a heavy rare earth element as a scarce resource. By incorporating fluorine into a magnetic powder and controlling the crystal orientation in crystal grains, a magnetic material securing magnetic characteristics such as coercive force and residual flux density can be fabricated. As a result, the resource problem with heavy rare earth elements can be solved, and the magnetic material can be applied to magnetic circuits that require a high energy product, including various rotating machines and voice coil motors of hard discs.
摘要:
A manufacturing method of a magnetic core includes a first step of applying a treatment liquid for forming an insulating film to iron powder; a second step of heat-treating the iron powder to which the treatment liquid has been applied, at a temperature higher than 350 degrees; a third step of compacting the heat-treated iron powder to form a magnetic core; and a forth step of heat-treating the magnetic core at a temperature ranging from 600 degrees to 800 degrees.
摘要:
A sintered magnet and a rotating machine equipped therewith are disclosed, which include: crystal grains of a ferromagnetic material consisting mainly of iron, and a fluoride compound or an oxyfluoride compound, containing at least one element selected from the group consisting of an alkali metal element, an alkaline earth metal element, and a rare earth element, the fluoride compound or the oxyfluoride compound being formed inside some of the crystal grains or in a part of a grain boundary part. The oxyfluoride compound or the fluoride compound contains carbon, and a grain boundary width of the ferromagnetic material is smaller than a grain boundary width of the ferromagnetic material in which the fluoride compound or the oxyfluoride compound is formed.
摘要:
A rare earth magnet having a composition represented by RTB wherein R denotes a rare earth element, T a transition metal and B boron, the magnet being composed of magnet powder constituted by crystalline particles. The particles of the magnetic powder have a ratio of a short diameter being 10 μm or more to a long diameter is 0.5 or less. An element Rm having a magnetic anisotropy higher than that of the rare earth element is contained in the surface and inside of the magnet constituted by the magnet powder in an approximately constant concentration. An oxy-fluoride and carbon are present at boundaries of the particles of the magnet powder.
摘要:
A magnet comprising grains of a ferromagnetic material whose main component is iron and a fluorine compound layer or an oxy-fluorine compound layer of fluoride compound particles of alkali metals, alkaline earth metals and rare earth elements, present on the surface of the ferromagnetic material grains, wherein an amount of iron atoms in the fluorine compound particles is 1 to 50 atomic %.
摘要:
A structure of a magnet wherein a magnet consisting of a magnetic body including iron and rare earths, a plurality of fluorine compound layers or oxyfluorine compound layers are formed interior of the magnetic body, and the fluorine compound layer or oxyfluorine compound layer has a major axis which is greater than the mean particle size of the crystal grains of the magnetic body.
摘要:
A magnet comprising magnetic powder containing at least one rare earth metal element, and an oxide binder for binding the magnetic powder, wherein an inter-face distance of the binder determined by diffraction analysis is 0.25 to 2.94 nm. The disclosure also discloses a method of manufacturing a magnet comprising; compacting magnetic powder containing at least one rare earth element under pressure in a mold; impregnating the compacted magnetic powder molding with a precursor solution of an oxide material; and heat-treating the compacted magnetic molding impregnated with the precursor thereby to impart an inter-face distance determined by diffraction analysis to the binder in the compacted molding. The distance is 0.25 to 2.94 nm.
摘要:
The object of the present invention is to both reduce costs and improve magnetic characteristics of rare-earth bond magnets in which magnetic material is bound with a binding agent. In order to achieve this object, magnetic characteristics of a magnet are improved by performing cold forming on rare-earth magnetic powder by itself with no resin added. Then, in order to provide strength for the magnet, a low-viscosity SiO2 precursor is infiltrated and thermoset in the magnet shaped body. As a result, it is possible to obtain a rare-earth bond magnet in which magnetic characteristics are improved and costs are reduced.
摘要:
Eddy current generated around a magnetic circuit in an MRI apparatus is one of the causes of deviation from an ideal magnetic field gradient waveform and causes image distortion, loss of strength, ghost generation, loss of signal, and spectral distortion. An object of the present invention is to suppress the generation of the eddy current. In an MRI apparatus, a ferromagnetic material formed from powder is used in a part of a magnetic circuit: the powder mainly comprising a mother phase containing iron or cobalt and showing ferromagnetism; and a high-resistance layer having a resistance not less than ten times as high as the mother phase and a Vickers hardness lower than that of the mother phase being formed in layers along parts of the surface of the powder on parts or the entire of the surface.