Abstract:
A method for power throttling upon a system includes: obtaining at least one characteristic information of a power source that is used for providing energy for the system; and, determining an available power range for the system according to the at least one characteristic information, so as to make the system control a behavior of the system according to the available power range.
Abstract:
A method for power throttling upon a system includes: obtaining at least one characteristic information of a power source that is used for providing energy for the system; and, determining an available power range for the system according to the at least one characteristic information, so as to make the system control a behavior of the system according to the available power range.
Abstract:
A method for estimating an available power range as a reference for performing power throttling upon a system includes: estimating an extra power range that is instantaneously available for the system according to at least one characteristic information of a power source that is used for providing energy for the system; and, calculating the available power range for the system according to the extra power range and a currently consumed power range so that the system controls a behavior of the system according to the available power range.
Abstract:
An apparatus used with a processor to perform fuel gauge operation for a battery of a portable device includes a voltage measuring circuit and a control circuit. The voltage measuring circuit periodically measures and records a battery pack voltage for the battery according to time information received from the processor after the processor enters a sleep mode. The control circuit generates an accumulation result by calculating and accumulating at least one value of battery characteristics according to the battery pack voltage, and compares the accumulation result with a reference threshold of battery characteristics to determine whether to trigger an interrupt to wake up the processor, so as to cause the processor to update a battery cell voltage and an internal battery resistance of the battery for performing fuel gauge operation.
Abstract:
A power management apparatus used in a system comprising multiple batteries includes an ADC measurement circuit and a processing circuit. The ADC measurement circuit is configured for measuring or detecting a plurality of voltage levels for each of the multiple batteries. The processing circuit is configured for calculating a DC current for each of the batteries according to an internal resistance of each of the batteries and the detected voltage levels, and for estimating an internal voltage level for each of the batteries according to the calculated DC current.
Abstract:
A method applied into an electronic device and capable of measuring at least one resistance parameter includes: launching a program/application on the electronic device; and using the program/application to measure the at least one resistance parameter that is at least associated with a battery cell connected to and used for providing power to the electronic device.
Abstract:
A method applied into an electronic device and capable of automatically measuring at least one parameter includes: launching an automatic program/application on the electronic device; and using the automatic program/application to measure the at least one parameter that is at least associated with a battery cell connected to and used for providing power to the electronic device.
Abstract:
A device estimates the health of a battery by first collecting measurements of the battery over multiple charging and discharging cycles. Scores are assigned to the measurements according to scoring rules stored in a memory of the device. The device calculates battery based on an average of the measurements, where each measurement has an assigned score greater than a threshold.
Abstract:
A method for calibrating a coulomb counting based state-of-charge (SOC) estimation of a battery cell includes: determining whether the battery cell is in a specific charge state; calibrating an initial value for use in the coulomb counting based SOC estimation according to an open circuit voltage (OCV)-based SOC of the battery cell if the battery cell is not in the specific charge state; calibrating the initial value according to a predetermined value if the battery cell is in the specific charge state; and applying the calibrated initial value to the coulomb counting based SOC estimation and restarting an integration of the coulomb counting based SOC estimation based on the calibrated initial value.
Abstract:
A method for controlling a state of a battery includes: providing and using a specific connecting interface to connect the battery and a portable device; and controlling the battery to enter a shipping mode and exit the shipping mode by using the specific connecting interface.