Abstract:
An implantable medical device that includes a body that includes a proximal end portion configured to be at least partially received by an apparatus, and a distal end portion; a stimulating electrical element at the distal end portion of the body; a stimulating contact at the proximal end portion of the body, wherein the stimulating contact is positioned such that, when received by the apparatus, at least a portion of the apparatus is capable of electrically coupling to the stimulating contact; a stimulating conductor that electrically couples the stimulating electrical element to the stimulating contact; a conductive body, wherein the conductive body is not utilized for application of stimulation; a conductive body contact, wherein the conductive body is electrically connected to the conductive body contact. Systems that include devices are also disclosed.
Abstract:
An implantable medical device that includes a body that includes a proximal end portion configured to be at least partially received by an apparatus, and a distal end portion; a stimulating electrical element at the distal end portion of the body; a stimulating contact at the proximal end portion of the body, wherein the stimulating contact is positioned such that, when received by the apparatus, at least a portion of the apparatus is capable of electrically coupling to the stimulating contact; a stimulating conductor that electrically couples the stimulating electrical element to the stimulating contact; a conductive body, wherein the conductive body is not utilized for application of stimulation; a conductive body contact, wherein the conductive body is electrically connected to the conductive body contact. Systems that include devices are also disclosed.
Abstract:
An implantable medical electrical lead includes an electrode assembly in which an electrical junction between a first conductor and an inner surface of a first electrode of the assembly is wedged within a first channel of at least one core member of the assembly, around which the first electrode extends. The at least one core member is formed from an insulating material, and the first channel may be one of a plurality of longitudinally extending channels arrayed around a circumference of a central lumen of the assembly, which is defined by the at least one core member. The first conductor extends along a length of the assembly, for example, defined between the first electrode and a second electrode thereof, in a helical path that travels around the central lumen.
Abstract:
This disclosure describes various modular electrode assemblies. For example, an implantable modular electrode assembly may include a hub including a plurality of electrical contacts configured to receive electrical signals from an implantable medical device, a first electrode module including a first substrate and a first plurality of electrodes on the first substrate, and a second electrode module including a second substrate and a second plurality of electrodes on the second substrate. The first and second electrode modules may be connectable to the hub, where the plurality of electrical contacts electrically communicate with the first and second plurality of electrodes.
Abstract:
Anchors for use with implantable medical leads include an elastic body containing one or more rigid bodies that have longitudinal free edges. The longitudinal free edges run from end to end to define full length slots. Partial length slots may also be included within the one or more rigid bodies. The full length and partial length slots allow for deflection of the rigid bodies against the body of an implantable medical lead to hold the anchor in place on the lead. The full length slots allow a blade to pass through and cut a slit in the elastic body which allows the anchor to be removed from the lead.
Abstract:
An implantable medical electrical lead includes an electrode assembly in which an electrical junction between a first conductor and an inner surface of a first electrode of the assembly is wedged within a first channel of at least one core member of the assembly, around which the first electrode extends. The at least one core member is formed from an insulating material, and the first channel may be one of a plurality of longitudinally extending channels arrayed around a circumference of a central lumen of the assembly, which is defined by the at least one core member. The first conductor extends along a length of the assembly, for example, defined between the first electrode and a second electrode thereof, in a helical path that travels around the central lumen.
Abstract:
This disclosure describes various modular electrode assemblies. For example, an implantable modular electrode assembly may include a hub including a plurality of electrical contacts configured to receive electrical signals from an implantable medical device, a first electrode module including a first substrate and a first plurality of electrodes on the first substrate, and a second electrode module including a second substrate and a second plurality of electrodes on the second substrate. The first and second electrode modules may be connectable to the hub, where the plurality of electrical contacts electrically communicate with the first and second plurality of electrodes.
Abstract:
A medical device anchor for use with electrical stimulation leads or catheters, and method of manufacture thereof. The anchor may include a gripping structure and a body portion molded on the gripping structure. The gripping structure forms a serpentine arrangement of a continuous nature with axial segments alternately interconnected between shoulder segments and bridging segments. The shoulder segments extend radially outward relative to the through hole further than the axial segments. The body portion may be formed by molding to securely capture the shoulder in the body portion, with the body portion being molded of material that is softer and more compliant than the gripping structure.
Abstract:
An implantable medical electrical lead includes an electrode assembly in which an electrical junction between a first conductor and an inner surface of a first electrode of the assembly is wedged within a first channel of at least one core member of the assembly, around which the first electrode extends. The at least one core member is formed from an insulating material, and the first channel may be one of a plurality of longitudinally extending channels arrayed around a circumference of a central lumen of the assembly, which is defined by the at least one core member. The first conductor extends along a length of the assembly, for example, defined between the first electrode and a second electrode thereof, in a helical path that travels around the central lumen.
Abstract:
This disclosure describes various modular electrode assemblies. For example, an implantable modular electrode assembly may include a hub including a plurality of electrical contacts configured to receive electrical signals from an implantable medical device, a first electrode module including a first substrate and a first plurality of electrodes on the first substrate, and a second electrode module including a second substrate and a second plurality of electrodes on the second substrate. The first and second electrode modules may be connectable to the hub, where the plurality of electrical contacts electrically communicate with the first and second plurality of electrodes.