摘要:
Techniques for transmitting data with short-term interference mitigation in a wireless communication system are described. In one design, a serving base station may send a message to a terminal to trigger short-term interference mitigation. In response, the terminal may send a message to request at least one interfering base station to reduce interference on at least one resource. Each interfering base station may determine a transmit power level to be used for the at least one resource and may send a pilot at this transmit power level. The terminal may estimate the channel quality of the at least one resource based on at least one pilot received from the at least one interfering base station. The terminal may send information indicative of the estimated channel quality to the serving base station. The serving base station may send a data transmission on the at least one resource to the terminal.
摘要:
A method, an apparatus, and a computer program product for wireless communication are provided in which a UE is equipped to receive first peer-to-peer communications using a first network communication channelization and a waveform, and transmit second peer-to-peer communications using a second network communication channelization and the waveform. Further, the UE may be equipped to map one or more channels in the second peer-to-peer communications to one or more uplink channels and/or downlink channels in the second network communication channelization. The second network communication channelization may include an LTE uplink/downlink channelization. The waveform may include OFDM or SC-FDM.
摘要:
Systems and methods are provided for adaptively transmitting information to a plurality of nodes in a local area of a base station. The base station receives channel quality information from one or more of the nodes within the local area, selects a transmission rate for a downlink transmission corresponding to the lowest channel qualities, and simultaneously transmits a message to the nodes at the selected transmission rate.
摘要:
Systems and methodologies are described herein that facilitate interference measurement and reporting in a network multiple-in-multiple-out (N-MIMO) communication system. As described herein, a network device can measure and report interference corresponding to network nodes outside a designated set of nodes that can cooperatively serve the device. Respective interference reports can additionally identify dominant interfering nodes, correlation between transmit antennas of respective nodes, or the like. Subsequently, respective interference reports can be combined with per-node channel information to manage coordination and scheduling across respective network nodes. As further described herein, interference from a network node can be measured by observing reference and/or synchronization signals from the network node. To aid such observation, respective non-interfering network nodes can define null pilot intervals in which transmission is silenced or otherwise reduced. As additionally described herein, loading information broadcasted by respective interfering network nodes can be identified and utilized in connection with interference calculation.
摘要:
Systems, apparatus, methods and computer program products for facilitating collision detection are provided. In some embodiments, a method can include: receiving identifying information during one or more time intervals from a plurality of base stations; determining whether at least two different values of the identifying information from the plurality of base stations have been transmitted during the same time interval; and determining that a collision has occurred between at least two of the plurality of base stations in response to determining that the at least two different values of the identifying information from the plurality of base stations have been transmitted during the same time interval.
摘要:
Techniques for allocating and mapping resources in a wireless communication system are described. The system may use hop-ports to facilitate allocation and use of subcarriers. In one aspect, the hop-ports may be partitioned into multiple subzones, with each subzone including a configurable number of hop-ports. The hop-ports within each subzone may be permuted or shuffled based on a permutation function. After permutation, the hop-ports in all subzones may be mapped to the subcarriers based on local or global hopping. In another aspect, a set of hop-ports may be mapped to a set of subcarriers. A hop-port may be mapped to an unavailable subcarrier and may then be remapped to another available subcarrier. In yet another aspect, a set of hop-ports may be mapped to a set of subcarriers distributed (e.g., evenly) across all subcarriers but avoiding subcarriers in a reserved zone.
摘要:
Techniques for supporting peer-to-peer (P2P) communication are disclosed. In an aspect, P2P communication may be supported with a symmetric waveform for a P2P downlink and a P2P uplink. In one design, a first UE generates a first signal based on a particular waveform (e.g., a downlink waveform or an uplink waveform for a wireless network) and transmits the first signal to a second UE for P2P communication. The first UE also receives a second signal generated by the second UE based on the particular waveform and transmitted to the first UE for P2P communication. In another aspect, a proximity detection signal may be transmitted in a portion of a subframe instead of the entire subframe. The remaining portion of the subframe may be used to transmit control information and/or other information to support P2P communication.
摘要:
Techniques for establishing and maintaining peer-to-peer (P2P) communication are described. In an aspect, P2P communication on an unlicensed spectrum may be established and maintained with network assistance. In one design, a user equipment (UE) may communicate with a wide area network (WAN) to establish P2P communication with at least one other UE on a first frequency band that is not licensed to the WAN. For example, the UE may receive an assignment of at least one frequency channel in the first frequency band for P2P communication. The UE may then communicate peer-to-peer with the other UE(s) on the at least one frequency channel. The UE may also communicate with the WAN to maintain P2P communication with the other UE(s), e.g., to switch to another frequency channel if necessary.
摘要:
Techniques for centralized control of peer-to-peer (P2P) communication and centralized control of femto cell operation are described. For centralized control of P2P communication, a designated network entity (e.g., a base station) may control P2P communication of stations (e.g., UEs) located within its coverage area. The designated network entity may receive an indication of a first station (e.g., a UE) desiring to communicate with a second station (e.g., another UE). The designated network entity may determine whether or not to select peer-to-peer communication for the first and second stations, e.g., based on the quality of their communication link. The designated network entity may assign resources to the stations if peer-to-peer communication is selected. For centralized control of femto cell operation, the designated network entity may control the operation of femto cells (e.g., may activate or deactivate femto cells) within its coverage area.
摘要:
Techniques for centralized control of peer discovery pilot transmission are described. In an aspect, a designated network entity (e.g., a base station or a network controller) may control transmission of peer discovery pilots by stations located within its coverage area. In one design, the network entity may receive signaling triggering peer discovery pilot transmission. The network entity may direct each of at least one station to transmit a peer discovery pilot to allow one or more stations to detect the at least one station. The peer discovery pilot may include at least one synchronization signal or at least one reference signal. The network entity may receive pilot measurements from the one or more stations for peer discovery pilots from peer stations and/or reference signals from base stations. The network entity may determine whether or not to select peer-to-peer communication for two stations based on the pilot measurements.