摘要:
Methods and systems for altering the electrical resistance of a wiring path. The electrical resistance of the wiring path is compared with a target electrical resistance value. If the electrical resistance of the wiring path exceeds the target electrical resistance value, an electrical current is selectively applied to the wiring path to physically alter a portion of the wiring path. The current may be selected to alter the wiring path such that the electrical resistance drops to a value less than or equal to the target electrical resistance value.
摘要:
Bi-directional back-to-back stacked SCRs for high-voltage pin ESD protection, methods of manufacture and design structures are provided. The device includes a symmetrical bi-directional back-to-back stacked silicon controlled rectifier (SCR). An anode of a first of the back-to-back stacked SCR is connected to an input. An anode of a second of the back-to-back stacked SCR is connected to ground. Cathodes of the first and second of the back-to-back stacked SCR are connected together. Each of the symmetrical bi-directional back-to-back SCRs include a pair of diodes directing current towards the cathodes which, upon application of a voltage, become reverse biased effectively and deactivating elements from one of the symmetrical bi-directional back-to-back SCRs while the diodes of another of the symmetrical bi-directional back-to-back SCRs direct current in the same direction as the reverse biased diodes.
摘要:
Device structures with a reduced junction area in an SOI process, methods of making the device structures, and design structures for a lateral diode. The device structure includes one or more dielectric regions, such as STI regions, positioned in the device region and intersecting the p-n junction between an anode and cathode. The dielectric regions, which may be formed using shallow trench isolation techniques, function to reduce the width of a p-n junction with respect to the width area of the cathode at a location spaced laterally from the p-n junction and the anode. The width difference and presence of the dielectric regions creates an asymmetrical diode structure. The volume of the device region occupied by the dielectric regions is minimized to preserve the volume of the cathode and anode.
摘要:
Semiconductor-on-insulator device structures with enhanced electrostatic discharge protection, and design structures for an integrated circuit with device structures exhibiting enhanced electrostatic discharge protection. A device is formed in a body region of a device layer of a semiconductor-on-insulator substrate, which is bounded by an inner peripheral sidewall of an annular dielectric-filled isolation structure that extends from a top surface of the device layer to the insulating layer of the semiconductor-on-insulator substrate. An annular conductive interconnect extends through the body region and the insulating layer to connect the body region with the bulk wafer of the semiconductor-on-insulator substrate. The annular conductive interconnect is disposed inside the inner peripheral sidewall of the isolation structure, which annularly encircles the body region.
摘要:
In one embodiment of an e-fuse programming/re-programming circuit, the e-fuse has two short high atomic diffusion resistance conductor layers positioned on opposite sides and at a same end of a long low atomic diffusion resistance conductor layer. A voltage source is used to vary the polarity and, optionally, the magnitude of voltage applied to the terminals in order to control bi-directional flow of electrons within the long conductor layer and, thereby formation of opens and/or shorts at the long conductor layer-short conductor layer interfaces. The formation of such opens and/or shorts can be used to achieve different programming states. Other circuit structure embodiments incorporate e-fuses with additional conductor layers and additional terminals so as to allow for even more programming states. Also disclosed are embodiments of associated e-fuse programming and re-programming methods.
摘要:
Semiconductor-on-insulator device structures with enhanced electrostatic discharge protection, and design structures for an integrated circuit with device structures exhibiting enhanced electrostatic discharge protection. A device is formed in a body region of a device layer of a semiconductor-on-insulator substrate, which is bounded by an inner peripheral sidewall of an annular dielectric-filled isolation structure that extends from a top surface of the device layer to the insulating layer of the semiconductor-on-insulator substrate. An annular conductive interconnect extends through the body region and the insulating layer to connect the body region with the bulk wafer of the semiconductor-on-insulator substrate. The annular conductive interconnect is disposed inside the inner peripheral sidewall of the isolation structure, which annularly encircles the body region.
摘要:
A heat generating component of a semiconductor device is located between two heavily doped semiconductor regions in a semiconductor substrate. The heat generating component may be a middle portion of a diode having a light doping, a lightly doped p-n junction between a cathode and anode of a silicon controlled rectifier, or a resistive portion of a doped semiconductor resistor. At least one thermally conductive via comprising a metal or a non-metallic conductive material is place directly on the heat generating component. Alternatively, a thin dielectric layer may be formed between the heat generating component and the at least one thermally conductive via. The at least one thermally conductive via may, or may not, be connected to a back-end-of-line metal wire, which may be connected to higher level of metal wiring or to a handle substrate through a buried insulator layer.
摘要:
Device structures with a reduced junction area in an SOI process, methods of making the device structures, and design structures for a lateral diode. The device structure includes one or more dielectric regions, such as STI regions, positioned in the device region and intersecting the p-n junction between an anode and cathode. The dielectric regions, which may be formed using shallow trench isolation techniques, function to reduce the width of a p-n junction with respect to the width area of the cathode at a location spaced laterally from the p-n junction and the anode. The width difference and presence of the dielectric regions creates an asymmetrical diode structure. The volume of the device region occupied by the dielectric regions is minimized to preserve the volume of the cathode and anode.
摘要:
Metal-insulator-metal (MIM) capacitors and methods for fabricating MIM capacitors. The MIM capacitor includes an interlayer dielectric (ILD) layer with apertures each bounded by a plurality of sidewalls and each extending from the top surface of the ILD layer into the first interlayer dielectric layer. A layer stack, which is disposed on the sidewalls of the apertures and the top surface of the ILD layer, includes a bottom conductive electrode, a top conductive electrode, and a capacitor dielectric between the bottom and top conductive electrodes.
摘要:
A heat generating component of a semiconductor device is located between two heavily doped semiconductor regions in a semiconductor substrate. The heat generating component may be a middle portion of a diode having a light doping, a lightly doped p-n junction between a cathode and anode of a silicon controlled rectifier, or a resistive portion of a doped semiconductor resistor. At least one thermally conductive via comprising a metal or a non-metallic conductive material is place directly on the heat generating component. Alternatively, a thin dielectric layer may be formed between the heat generating component and the at least one thermally conductive via. The at least one thermally conductive via may, or may not, be connected to a back-end-of-line metal wire, which may be connected to higher level of metal wiring or to a handle substrate through a buried insulator layer.