摘要:
The organic EL device of the present invention fulfils the object of realizing an EL device which exhibits an excellent electron and hole injecting efficiency and an improved light emitting efficiency and which can be operated at a low drive voltage and manufactured at a reduced cost. In order to attain such object, the organic EL device comprises a hole injecting electrode, an electron injecting electrode, and one or more organic layers between the electrodes wherein at least one of said organic layers has a light emitting function. A high resistivity inorganic electron injecting layer is provided between said organic layer and said electron injecting electrode. This layer comprises a first component comprising at least one oxide of an element selected from alkali metal elements, alkaline earth metal elements, and lanthanide elements, and a second component comprising at least one metal having a work function of 3 to 5 eV, and this layer has conduction paths for hole blockage and electron transportation. An inorganic insulative hole injecting and transporting layer is provided between the light emitting layer and the hole injecting layer. This layer contains oxide of silicon and/or germanium as its main component, and such main component has an average composition of: (Si1−xGex)Oy wherein 0≦x≦1 and 1.7≦y≦1.99.
摘要:
The object of the invention is to provide an organic EL device which possesses the merits of both an organic material and an inorganic material, has high efficiency and an extended life, and can be fabricated at low cost. This object is achieved by the provision of an organic EL device comprising a hole injecting electrode, an electron injecting electrode and an organic layer interleaved between these electrodes and including at least a light emitting layer. A high-resistance inorganic electron transporting layer is interleaved between the light emitting layer and the electron injecting electrode and includes a conduction path for blocking holes and transporting electrons. An organic electron injecting layer is interleaved between the high-resistance inorganic electron transporting layer and the electron injecting electrode.
摘要:
The object of the invention is to provide a high-efficiency, long-life yet low-cost organic EL device which possesses the merits of both an organic material and an inorganic material. This object is achieved by the provision of an organic EL device which comprises a hole injecting electrode and an electron injecting electrode between which an organic layer having at least a light emitting layer is provided, an inorganic insulating electron transporting layer provided between the light emitting layer and the electron injecting layer, a hole injecting and transporting layer provided between the light emitting layer and the hole injecting electrode, and an organic electron injecting layer provided between the inorganic insulating electron transporting layer and the electron injecting layer.
摘要:
An organic EL device has a hole injecting electrode, an electron injecting electrode, at least one organic layer between the electrodes, and an inorganic insulating hole injecting and transporting layer between the hole injecting electrode and the organic layer. The inorganic insulating hole injecting and transporting layer contains silicon oxide and/or germanium oxide as a main component, the main component being represented by (Si1−xGex)Oy wherein 0≦x≦1 and 1.8≦y≦2.5, and further contains 0.01 to 2% by weight of at least one element selected from among Ar, Kr, Xe, and Ne. The device has the advantages of both organic and inorganic materials, a long lifetime, improved efficiency, low operating voltage, and low cost, and can provide a high luminance of light emission when applied to displays of the time-division driving mode, and realize large screen, high definition displays.
摘要翻译:有机EL器件具有空穴注入电极,电子注入电极,电极之间的至少一个有机层以及空穴注入电极和有机层之间的无机绝缘性空穴注入输送层。 无机绝缘空穴注入传输层含有氧化硅和/或氧化锗作为主要成分,主成分由(Si1-xGex)Oy表示,其中0 <= x <= 1且1.8 <= y <= 2.5, 并且还含有0.01〜2重量%的选自Ar,Kr,Xe和Ne中的至少一种元素。 该器件具有有机材料和无机材料的优点,使用寿命长,效率高,工作电压低,成本低,适用于时分驱动模式的显示器时可提供高亮度的发光,实现 大屏幕,高清显示屏。
摘要:
An organic EL device comprises a substrate, a hole injecting electrode and an electron injecting electrode formed on the substrate and at least an organic layer taking part in light emitting function and located between these electrodes. Between the electron injecting electrode and the organic layer there is an inorganic insulating electron injecting layer comprising as a main component an oxide having an electron affinity of up to 3 eV with a stabilizing component added thereto. The organic EL device possesses the merits of both an organic material and an inorganic material, and has an extended life, an improved efficiency, a low driving voltage, and so is of great practical value.
摘要:
An active matrix circuit comprises a semiconductor layer, and a p-type impurity region provided in said semiconductor layer, and an interlayer insulating film comprising silicon nitride provided over said semiconductor layer.
摘要:
In a thin film semiconductor device having a substrate (1), an active layer (3, 6, 9), a gate insulation layer (4), and a gate electrode (5), said active layer is produced through the steps of producing an amorphous silicon layer on said substrate through a CVD process by using a gas made up of poly silane SinH2(n+1), where n is an integer, and chloride gas, and effecting solid phase growth to produce said amorphous silicon layer. The addition of chlorine to the CVD gas used in producing the amorphous silicon layer makes it possible to produce the amorphous silicon layer at a lower temperature with a rapid growth rate. A thin film semiconductor device thus produced has the advantages of high mobility and low threshold voltage.
摘要:
A method of manufacturing a semiconductor characterized in that, in polycrystallizing an amorphous silicon thin film formed on a substrate through an annealing process, the amorphous silicon thin film has a plane area of 1000 μm2 or less. A thin-film transistor characterized by comprising an active silicon film which is formed of a plurality of island-like regions arranged in parallel to each other, each of the island-like regions being formed of a polycrystal silicon thin film having a plane area of 1000 μm2 or less. A method of manufacturing a thin-film transistor comprising the steps of: forming an amorphous silicon thin film on a substrate; processing the amorphous silicon thin film into a plurality of island-like regions each having a plane area of 1000 μm2 or less; polycrystallizing an amorphous silicon thin film that forms the island-like regions through an annealing process; and forming a thin-film transistor having at least one of the plurality of island-like regions as an active silicon layer.
摘要:
A thin film transistor which includes an insulation base, first and second gate electrodes, first and second insulation layers, an active layer of semiconductor material, a source electrode and a drain electrode, in which a lateral length of the first gate electrode is narrower than a lateral length of the second gate electrode. Also, the first gate is electrically insulated from the active layer of semiconductor material by the first insulation layer so that the drain current saturates in a high drain voltage region.
摘要:
A substrate (1) has a surface covered with an insulation layer (2), on which an active layer (3') made of non-single crystal silicon through thin film technique is provided. A gate electrode layer (5') is partially provided on said active layer through a gate insulation layer (4). Said active layer (3') is subject to injection of P-type or N-type impurities to provide an image sensor of MOS structure. Bias potential is applied to a gate electrode so that a circuit between a source and a drain is in an On state, so that input light through said substrate or said gate electrode is applied to said active layer, and electrical output depending upon said input light is obtained from said source electrode or said drain electrode. Other MOS transistors for switching element and/or shift registers for operating said image sensor are provided on said substrate (1). Said active layer (3') is obtained by crystallizing said amorphous silicon layer through a laser anneal process or a high temperature anneal process, and hydrogenation process, and the trap density of said active layer is less than 5.times.10.sup.11 /cm.sup.2. Optical response time is short, less than 500 .mu.sec, so, high speed operation ten times as high as that of a prior image sensor is possible.