Abstract:
A method of forming a semiconductor structure. The method comprises forming a protective portion of a liner on at least a portion of stack structures on a substrate. The protective portion comprises a material formulated to adhere to the stack structures. A conformal portion of the liner is formed on the protective portion of the liner or on the protective portion of the liner and exposed materials of the stack structures. At least one of the protective portion and the conformal portion does not comprise aluminum. Additional methods of forming a semiconductor structure are disclosed, as are semiconductor structures including the liners comprising the protective portion and the conformal portion.
Abstract:
A method of forming a semiconductor structure. The method comprises forming a protective portion of a liner on at least a portion of stack structures on a substrate. The protective portion comprises a material formulated to adhere to the stack structures. A conformal portion of the liner is formed on the protective portion of the liner or on the protective portion of the liner and exposed materials of the stack structures. At least one of the protective portion and the conformal portion does not comprise aluminum. Additional methods of forming a semiconductor structure are disclosed, as are semiconductor structures including the liners comprising the protective portion and the conformal portion.
Abstract:
A method of forming a semiconductor structure. The method comprises forming a protective portion of a liner on at least a portion of stack structures on a substrate. The protective portion comprises a material formulated to adhere to the stack structures. A conformal portion of the liner is formed on the protective portion of the liner or on the protective portion of the liner and exposed materials of the stack structures. At least one of the protective portion and the conformal portion does not comprise aluminum. Additional methods of forming a semiconductor structure are disclosed, as are semiconductor structures including the liners comprising the protective portion and the conformal portion.
Abstract:
Various embodiments of microelectronic devices and methods of manufacturing are described herein. In one embodiment, a method for aligning an electronic feature to a through-substrate via includes forming a self-aligned alignment feature having a wall around at least a portion of the TSV and aligning a photolithography tool to the self-aligned alignment feature. In some embodiments, the self-aligned alignment feature is defined by the topography of a seed material at a backside of the device.
Abstract:
Various embodiments of microelectronic devices and methods of manufacturing are described herein. In one embodiment, a method for aligning an electronic feature to a through-substrate via includes forming a self-aligned alignment feature having a wall around at least a portion of the TSV and aligning a photolithography tool to the self-aligned alignment feature. In some embodiments, the self-aligned alignment feature is defined by the topography of a seed material at a backside of the device.
Abstract:
Various embodiments of microelectronic devices and methods of manufacturing are described herein. In one embodiment, a method for aligning an electronic feature to a through-substrate via includes forming a self-aligned alignment feature having a wall around at least a portion of the TSV and aligning a photolithography tool to the self-aligned alignment feature. In some embodiments, the self-aligned alignment feature is defined by the topography of a seed material at a backside of the device.