摘要:
Noise is measured at one or more base stations in a mobile communication system during periodic silence periods. A periodic silence period is defined for at least one carrier that is independent of reverse link channel frame boundaries. The radio base stations transmits silence parameters defining the periodic silence period to mobile stations, which stop transmitting during the periodic silence periods. A time reference is provided to the mobile stations to synchronize the silence periods for all mobile stations.
摘要:
A radio base station (RBS) provides dynamic rate adaptation for rate-adjustable communication channels used to transmit information to remote mobile stations based on monitoring transmit power information associated with those channels. For a given channel, the RBS tracks an average channel power on a per transmit frame basis and compares the average to first and second rate adjustment thresholds, which comparisons trigger downward or upward rate adjustments. Similar operation also may be based on averaging the power control commands returned by the mobile station, which indicate whether the channel's power as received by the mobile station is or is not sufficient with respect to a desired signal quality. This method thus provides a mechanism for rapid rate adaptation without requiring explicit rate control signaling from the mobile stations.
摘要:
Systems and methodologies are described that facilitate random access procedures using one or more fallback access schemes after initial access attempts have failed. UE equipped to determine failure of a first access request to a first base station due to interference from a second base station. Further, a UE equipped to determine the failure can do so and implement one or more fallback access schemes in response to the determination. In one example, a fallback access scheme allows the UE to select a secondary carrier frequency for communications with the first base station. In another example, a fallback access scheme allows the UE to designate the first base station as inaccessible and communicate with other base stations.
摘要:
Methods and apparatuses are provided for facilitating dynamic measurement power offset adjustments for use in reporting channel quality feedback. A user equipment may generate and send a plurality of channel quality indicator (CQI) values to a base station. The base station determines whether at least some of the received CQI values are outside of an upper or lower threshold value. If at least some of the received CQI values are outside the upper or lower threshold value, the base station can transmit an adjusted measurement power offset to the user equipment. On receipt of the adjusted measurement power offset, the user equipment generates subsequent CQI values using the adjusted measurement power offset.
摘要:
A Forward Supplemental Channel (F-SCH) serving sector for a packet data call to a mobile terminal in a CDMA network is dynamically selected by monitoring radio channel conditions at potential F-SCH serving sectors. The sector loading at the potential F-SCH serving sectors is also monitored. A new F-SCH serving sector is then selected based on the sector loading and the channel condition measurements. Radio channel conditions may be monitored by PPSMM and/or CQI reports from the mobile terminal, monitoring the transmit power on the F-FCH of sectors in the mobile terminal's active set, and monitoring the transmit power on the F-SCH of the current serving sector. The new F-SCH serving sector may be determined by estimating sector loading of each potential sector at each possible data rate, and selecting the sector offering the highest data rate and lowest loading at that rate.
摘要:
A Forward Supplemental Channel (F-SCH) serving sector for a packet data call to a mobile terminal in a CDMA network is dynamically selected by monitoring radio channel conditions at potential F-SCH serving sectors. The sector loading at the potential F-SCH serving sectors is also monitored. A new F-SCH serving sector is then selected based on the sector loading and the channel condition measurements. Radio channel conditions may be monitored by PPSMM and/or CQI reports from the mobile terminal, monitoring the transmit power on the F-FCH of sectors in the mobile terminal's active set, and monitoring the transmit power on the F-SCH of the current serving sector. The new F-SCH serving sector may be determined by estimating sector loading of each potential sector at each possible data rate, and selecting the sector offering the highest data rate and lowest loading at that rate.
摘要:
A wireless communication network manages variable data rate communication channels using both short-term data rate adaptation and longer-term resource allocation adjustment. For example, an exemplary base station system may track the actual transmit power being used to transmit a given communication channel on a per frame basis, or faster, and use that tracked value to infer changing channel conditions, e.g., for a given current data rate, higher power indicates poorer channel conditions and lower power indicates better channel conditions. Additionally, or alternatively, channel quality information reported by a receiving mobile station can be used. Regardless, relatively fast data rate changes can be made responsive to monitoring the channel conditions, while retaining the communication resource allocation for the channel. Over the longer term, however, the allocation itself can be changed, e.g., increased or decreased, depending on whether the channel is being efficiently utilized.
摘要:
A radio base station (RBS) provides dynamic rate adaptation for rate-adjustable communication channels used to transmit information to remote mobile stations based on monitoring transmit power information associated with those channels. For a given channel, the RBS tracks an average channel power on a per transmit frame basis and compares the average to first and second rate adjustment thresholds, which comparisons trigger downward or upward rate adjustments. Similar operation also may be based on averaging the power control commands returned by the mobile station, which indicate whether the channel's power as received by the mobile station is or is not sufficient with respect to a desired signal quality. This method thus provides a mechanism for rapid rate adaptation without requiring explicit rate control signaling from the mobile stations.
摘要:
In a wireless communication network providing voice and data services, one or more entities in the network, such as a base station controller and/or radio base station, can be configured to reduce data services overhead responsive to detecting a congestion condition, thereby increasing the availability of one or more network resources for voice services. In one or more exemplary embodiments, one or more current data services users are targeted for modification of their ongoing data services to effect the reduction in data services overhead. Modifications can include, but are not limited to, any one or more of the following: forward or reverse link data rate reductions, and shifting of forward or reverse link traffic from dedicated user channels to shared user channels. Targeting of users for service modification can be based on reported channel quality information. For example, users reporting poor radio conditions can be targeted first for service modifications.
摘要:
A radio base station performs reverse link rate control in a wireless communication network by “stealing” bits on a forward common power control channel. The forward common power control channel is divided into a plurality of frames, with each frame including a plurality of power control groups and each power control group including a plurality of power control slots. The radio base station may dynamically select power control slots depending on user demand to be used for reverse link rate control.