摘要:
A stacked structure (1) includes an electrostriction layer (2) including an electric inductive distortion material and a stress light-emitting layer (3) including a stress light-emitting material. When applying a voltage to the electrostriction layer (2) in the stacked structure (1), the electric inductive distortion material deforms, thereby the electrostriction layer (2) deforms. The deformation of the electrostriction layer (2) causes an external force to act on the stress light-emitting material of the stress light-emitting layer (3), and the stress light-emitting layer (3) emits light, accordingly. That is, by applying the voltage to the stacked structure (1), the stacked structure (1) can emit the light.
摘要:
A stress analysis method uses a thermoelastic stress measurement device to measure measuring stress state acting on an object by measuring material temperature state variation caused by stress, a mechanoluminescence measurement device to measure measuring stress state acting on the object by measuring light emitted from mechanoluminescence material according to the stress and an arithmetic processing device to obtain mechanical information, which includes prescribed stress distribution, by performing arithmetic processing on both the measurement data.
摘要:
Provided is a stress history recording system for recording a stress history, which includes a light emitting means including a stress-stimulated luminescent material that emits light in response to a mechanical external force, and a recording means for recording a history of a photoreaction generated due to light emission from the light emitting means. This achieves a technology for recording a stress history by using the stress-stimulated luminescent material.
摘要:
There is an essential limitation that only surface principal stress sum variation (Δ(σ1+σ2)) can be measured as physical quantity by a thermoelastic stress measurement technique, and furthermore respective principal stress components are unknown, and pure shearing stress acting on an object cannot be measured because it causes no temperature variation. Thus, in the present invention, when stress state of the object is measured, not only the thermoelastic stress measurement but also stress measurement (mechanoluminescence measurement) using a mechanoluminescence material is used in combination. Consequently, stress can be measured in detail; for example, principal stress component values (σ1 and ρ2) can be known while exceeding the principle limitation of the thermoelastic stress measurement technique.
摘要翻译:存在仅通过热弹性应力测量技术仅测量表面主应力和变化(Delta(σσ1σσσ2))作为物理量的基本限制,以及 此外,各个主要应力分量是未知的,并且作用在物体上的纯剪切应力不能测量,因为它不会导致温度变化。 因此,在本发明中,当测量物体的应力状态时,不仅组合使用机械发光材料的热弹性应力测量,而且应力测量(机械发光测量)。 因此,可以详细测量应力; 例如,当超过热弹性应力测量技术的主要限制时,可以知道主应力分量值(σ1 H 2和R 2 O 2)。
摘要:
A stress-luminescent material emits luminescence when external mechanical energy is applied thereto. The fine particles of the material have an anisotropic aspect ratio, preferably, from 2 to 1000, more preferably, from 5 to 100. Raw materials are mixed together in an aqueous solvent, and aqueous ammonia is added thereto to change the pH value, thereby controlling the aspect ratio of the stress-luminescent material particles. Also provided are compositions containing the stress-luminescent material, such as a coating material, an ink, and an adhesive.
摘要:
A spherical crystalline metal oxide particle is produced by introducing a metal ion-containing solution, which has been atomized, into an atmosphere that is kept at 1000° C. or more and under oxidizing condition, in order to concurrently dry and sinter the metal ion-containing solution. Moreover, As an apparatus for producing the particle, an apparatus is used, which is structured by connecting: (A) a heating apparatus for concurrently drying and sintering an atomized particulate, the heating apparatus (4) including multi channel atomizing apparatus (3) having a function of atomizing a metal ion-containing solution, and a function of sorting a size of the thus atomized particulate; and (B) an electrostatic particle collecting apparatus (5) for electrostatically collecting the particle that is thus produced by (A) and has a predetermined size. With this arrangement, it is possible to provide a method and an apparatus capable of obtaining a highly crystalline spherical particle of a metal oxide safely and easily.
摘要:
When visualizing the stress distribution of natural bone, synthetic bone, or a member attached to either thereof without omitted points, in order to measure accurately in a variety of modes using an inexpensive system, a mechanoluminescence material thin film 6 is formed in advance on a bone material peripheral surface 5 in an appropriate area thereof including the portion where an insertion support portion 4 of an artificial hip prosthesis 2 is inserted into a hollow inside 3 of a damaged femur 1 or a synthetic bone simulating the damaged femur. The mechanoluminescence material thin film 6 portion is photographed over its entire circumference with an IICCD camera 7 from the external peripheral side thereof as or after the artificial hip prosthesis 2 is inserted. The obtained image is fed to a computer 11 to obtain a luminescence image 8. The computer 11 outputs the intensities of the received light in the form of an image as is, so that the luminescence image 8 can be obtained easily. Particularly, the data about the intensities of the received light can be used as stress/strain data virtually as is. Such method is also suitable for dynamic analysis.
摘要:
In one embodiment of the present invention, on the surface of a material to be measured for stress analysis which has a stress-induced luminescent material layer formed thereon, a distortion energy is disclosed which is transmitted from a base material of a stress-induced luminescent material to the stress-induced luminescent material with high efficiency. The material to be measured for stress analysis has, on the surface thereof, a coating film layer, which emits light upon exposure to a change in distortion energy. The coating film layer is formed of a synthetic resin layer containing stress-induced luminescent particles, and the modulus of elasticity of a base material is not less than 1.0 GPa. The thickness of the coating film layer is preferably 1 μm to 500 μm.
摘要:
Provided are a stress analysis method and stress analysis equipment that enable a detailed stress measurement, by using both a photoelasticity measurement method and a stress measurement (mechanoluminescence measurement) which utilizes a mechanoluminescent substance to measure a stress state of an object. Physical quantities that are measurable include individual principal stress component and a principal stress direction. The photoelasticity measurement method alone cannot measure individual principal stress component values.
摘要:
One embodiment of the present invention provides (i) a luminant having a unique crystal structure so as to exhibit high luminosity and (ii) a manufacturing method thereof. Further, the present invention discloses (I) a luminant which exhibits ultraviolet luminescence and (II) a manufacturing method thereof. The inventors developed a stress-stimulated luminescent material which exhibits high luminosity by using a compound having a structure obtained by inserting alkali metal ions and alkali earth metal ions into a base material structure constituted of polyhedral-structure molecules and partially substituting the alkali metal ions and alkali earth metal ions by rare earth metal ions, transition metal ions, group-III metal ions, or group-IV metal ions. Further, the inventors developed a stress-stimulated luminescent material which exhibits high-luminosity stress-stimulated ultraviolet luminescence by adding specific metal ions such as Ce as a luminescent center to the aforementioned stress-stimulated luminescent material.