Abstract:
It is difficult to avoid a decrease in cooling capacity without causing an increase in power consumption if a cooling device including a piping structure grows in size, therefore, a piping structure according to an exemplary aspect of the present invention includes a tubular part including a first flow passage through which a refrigerant flowing and a shell region surrounding the first flow passage; an introduction part composing a part of the shell region and including a second flow passage connected to the first flow passage; and a connection located at an end, between ends of the introduction part, on the side opposite to an end on a side where the second flow passage being connected to the first flow passage.
Abstract:
A cooling structure of a sealed casing according to the present invention includes sealed containers for housing heat-generation components irradiated with light from a light source to generate heat, an evaporation unit disposed in the sealed container to store a refrigerant, a condensation unit configured to liquefy the refrigerant gasified by the heat received from the heat-generation component, a steam pipe configured to connect the evaporation unit and the condensation unit, through which the gasified refrigerant flows, and a liquid pipe configured to connect the evaporation unit and the condensation unit to each other, through which the liquefied refrigerant flows. Thus, a cooling structure capable of preventing performance deterioration of a cooling target device can be achieved.
Abstract:
A cooling apparatus includes N (N is an integer of 2 or larger) refrigerant storage units arranged in a vertical direction and configured to store refrigerants, a condensation unit disposed above the N refrigerant storage units, a steam pipe for circulating gas phase refrigerants flowing out of the N refrigerant storage units to the condensation unit, a liquid pipe for circulating a liquid phase refrigerant flowing out of the condensation unit to an uppermost refrigerant storage unit, and separation piping for circulating a liquid phase refrigerant flowing out of an upper refrigerant storage unit to a lower refrigerant storage unit. The liquid phase refrigerant flows into each refrigerant storage unit via an inlet, and flows out from the refrigerant storage unit via a first connection port formed below the inlet.
Abstract:
A heat exchanger has a structure in which a heat exchanger main body through which coolant flows is obliquely installed in a box-shaped enclosure, the heat exchanger main body is constituted by a header pipe and a plurality of heat transfer pipes connected to the header pipe and disposed at predetermined intervals along a surface of a part of the header pipe, the header pipe has an area adjacent to an inner surface of the enclosure, and a seal section is provided between the inner surface of the enclosure and the area of the header pipe adjacent to the enclosure.
Abstract:
The present invention provides an attachment for a server rack cooling system having at least one heat exchange condenser, the attachment includes: a pipe extension configured to connect to a portion of the server rack cooling system at which air and refrigerant are able to be transferred into the attachment from the at least one heat exchange condenser; a valve on the pipe extension configured to allow exhaust to the outside through the pipe extension at an open position and to block exhaust to the outside at a closed position; and an sensor disposed at a position inside of the pipe extension between the at least one heat exchange condenser and the valve and configured to provide a detection signal determined by a presence of fluid at the position of the sensor; wherein, the valve is opened and closed based on the detection signal from the sensor.
Abstract:
In order to efficiently distribute a heat medium at a low heat medium pressure, a heat exchange apparatus includes a heat exchange pipe 2 configured to accommodate a heat medium L to be evaporated by heat absorption from a gas to be cooled, the heat exchange pipe being disposed in an inclined state, a supply pipe 1 configured to supply the heat medium L in a liquid-phase state, the supply pipe being placed in a vicinity of a lower part of the heat exchange pipe 2, a discharge pipe 3 configured to receive a heat medium L to be evaporated in the heat exchange pipe 2 and discharged from an upper part of the heat exchange pipe, and a connecting pipe 4 placed, directing downward, between an upper part of the heat exchange pipe 2 and the discharge pipe 3.
Abstract:
A cooling performance of a phase-change cooling system that circulates a refrigerant liquid using a driving source is remarkably lowered immediately after the startup. Thus, the phase-change cooling system according to the present invention includes: an evaporator that contains the refrigerant liquid for receiving the heat from the heating source; a condenser that releases the heat of the refrigerant vapor generated by the vaporization of the refrigerant liquid at the evaporator and generates the refrigerant liquid; the refrigerant liquid driving means for circulating the refrigerant liquid; the first piping unit for connecting the evaporator with the condenser; the second piping unit for connecting the condenser with the refrigerant liquid driving means; the third piping unit for connecting the refrigerant liquid driving means with the evaporator; and the fourth piping unit that has one end, at the first connection point, connected with the first piping unit and the other end, at the second connection point, connected with the second piping unit, in which the first connection point is positioned at a lower place than a position of an interface between the refrigerant liquid and the refrigerant vapor within the first piping unit when the refrigerant liquid driving means is started up.
Abstract:
A vapor pipe 103 connects a heat dissipation portion 200 and each of a plurality of heat receiving portions 102. A liquid pipe 104 connects the heat dissipation portion 200 and each of a plurality of the heat receiving portions 102. A bypass pipe 105 connects the vapor pipe 103 and the liquid pipe 104. A valve 106 opens and closes a flow path of the bypass pipe 105. A first connection portion 107 connects the vapor pipe 103 and the bypass pipe 105. A second connection portion 108 connects the liquid pipe 103 and the bypass pipe 105. The first connection portion 107 is disposed at a position higher than that of the second connection portion 108. As a result, refrigerant can be efficiently transported in a short time.
Abstract:
[Problem]To provide an electronic apparatus cooling system having superior cooling characteristics and portability.[Solution] A rack 2 is installed within a container 1. A heat receiving apparatus 3 is disposed on a lateral face of the rack 2, and receives heat emitted within the rack 2 by a liquid-phase cooling medium gasifying and becoming a gaseous-phase cooling medium. A gaseous-phase tube 6 is disposed extending in plumb direction, and transports the gaseous-phase cooling medium from the heat receiving apparatus 3. A heat radiating apparatus 4 is disposed above the rack 2 outside the container 1, and radiates the heat which the heat receiving apparatus 3 has received by cooling the gaseous-phase cooling medium flowing from the gaseous-phase tube 6, making said gaseous-phase cooling medium into the liquid-phase cooling medium. A liquid-phase tube 7 transports the liquid-phase cooling medium from the heat radiating apparatus 4 to the heat receiving apparatus 3. The gaseous-phase tube 6 further comprises a gaseous-phase tube bend part 6c whereat cooling medium droplets, which arise from the condensation of the gaseous phase cooling medium as a result of the gaseous-phase tube 6 being exposed to the environment external to the container 1, are collected.
Abstract:
The present invention includes: a heat receiving portion that receives heat generated by an electronic apparatus and causes a phase of a first heating medium to change from a liquid phase to a gas; a heat radiating portion that causes a phase of the first heating medium to change from the gas to the liquid and supplies the first heating medium to the heat receiving portion; and a compressor that raises a temperature of the first heating medium supplied from the heat receiving portion and supplies the first heating medium to the heat radiating portion.