Abstract:
A server rack includes an air inlet configured to intake air from outside of the server rack, an air exhaust outlet configured to exhaust air to an outside of the server rack, an inlet temperature sensor configured to measure the temperature of inlet air, a heat exchanger provided at an air exhaust outlet of the server rack, a power consumption sensor provided to a power supply of the server rack and configured to measure electrical power consumption of the server rack, and a heat exchange controller configured to control heat exchange between the heat exchanger and the exhaust air based on measurements from the inlet temperature sensor and the power consumption sensor.
Abstract:
A cooling performance of a phase-change cooling system that circulates a refrigerant liquid using a driving source is remarkably lowered immediately after the startup. Thus, the phase-change cooling system according to the present invention includes: an evaporator that contains the refrigerant liquid for receiving the heat from the heating source; a condenser that releases the heat of the refrigerant vapor generated by the vaporization of the refrigerant liquid at the evaporator and generates the refrigerant liquid; the refrigerant liquid driving means for circulating the refrigerant liquid; the first piping unit for connecting the evaporator with the condenser; the second piping unit for connecting the condenser with the refrigerant liquid driving means; the third piping unit for connecting the refrigerant liquid driving means with the evaporator; and the fourth piping unit that has one end, at the first connection point, connected with the first piping unit and the other end, at the second connection point, connected with the second piping unit, in which the first connection point is positioned at a lower place than a position of an interface between the refrigerant liquid and the refrigerant vapor within the first piping unit when the refrigerant liquid driving means is started up.
Abstract:
A battery control device controlling an operation of a battery connected to a power system includes detection means that detects battery-related information showing a state of the battery, or a state of an interconnection point of the power system and the battery, first communication means that transmits a detection result of the detection means to an external device, and executes reception processing to receive operation control information to control the operation of the battery from the external device at a predetermined time interval, and control means that executes battery operation control processing to control the operation of the battery based on a state of the power system and based on the operation control information received by the first communication means, at a time interval shorter than the predetermined time interval.
Abstract:
Acquisition unit 184 acquires an adjustment period in which power supply and demand is adjusted, and adjustment power which is power to be adjusted in the adjustment period. Adjustment target determining unit 185 requests an adjustment target storage battery to be charged or discharged at a predetermined electricity rate in the adjustment period and determines, based on the adjustment power, adjustment target storage batteries from among the storage batteries that have responded to the request. In the adjustment period, control unit 186 causes the adjustment target storage batteries to charge or discharge electricity at the predetermined electricity rate and causes a non-adjusted storage battery that is different from the adjustment target storage battery to charge or discharge electricity at an electricity rate different from the predetermined electricity rate.
Abstract:
A phase-change cooling system including: an evaporator holding a refrigerant liquid receiving heat from a heat generating source; a condenser releasing heat of a refrigerant vapor generated by vaporization of the refrigerant liquid at the evaporator and generating the refrigerant liquid; refrigerant liquid driving unit circulating the refrigerant liquid; a first piping unit for connecting the evaporator and the condenser; a second piping unit connecting the condenser and the refrigerant liquid driving unit; a third piping unit connecting the refrigerant liquid driving unit and the evaporator; and a fourth piping unit having one end connected to the first piping unit at a first connection point and another end connected to the second piping unit at a second connection point; a refrigerant storage unit storing the refrigerant liquid, the refrigerant storage unit being provided within a flow channel formed with the second piping unit.
Abstract:
In a phase-change cooling apparatus including an indoor unit and an outdoor unit, a configuration to prevent dew condensation in the indoor unit causes the cooling performance to decrease; therefore, a refrigerant circulating apparatus according to an exemplary aspect of the present invention includes refrigerant-liquid thermal equilibrium means for mixing a first refrigerant liquid with a second refrigerant liquid and sending a reflux refrigerant liquid composed of the first refrigerant liquid and the second refrigerant liquid, the first refrigerant liquid being a liquid-phase refrigerant included in a gas-liquid two-phase refrigerant flowing in from heat receiving means, the second refrigerant liquid arising due to the gas-liquid two-phase refrigerant cooled by heat radiating means; a refrigerant passage configured for the gas-liquid two-phase refrigerant and the reflux refrigerant liquid to circulate between the heat receiving means and the refrigerant-liquid thermal equilibrium means; refrigerant-liquid reflux means for refluxing the reflux refrigerant liquid to the heat receiving means through the refrigerant passage; and refrigerant-liquid flow control means for controlling a flow rate of the reflux refrigerant liquid.
Abstract:
A supply-and-demand adjustment system, that utilizes characteristics of supply-and-demand adjustment apparatuses and precisely matches a total supply-and-demand adjustment amount with a required adjustment amount when performing a supply-and-demand adjustment. The supply-and-demand adjustment system comprises a central control apparatus and one or more supply-and-demand adjustment apparatuses, the central control apparatus includes a state collection unit that collects information with regard to a state of each supply-and-demand adjustment apparatus, an allocation band calculation unit that calculates a frequency band and an intensity of a fluctuation of a supply-and-demand adjustment to be allocated to each supply-and-demand adjustment apparatus based on the information of the state, and an adjustment amount calculation unit that calculates a supply-and-demand adjustment amount for each supply-and-demand adjustment apparatus based on the frequency band and the intensity of the fluctuation of the supply-and-demand adjustment to be allocated to said each supply-and-demand adjustment apparatus.
Abstract:
A power control system includes an acquisition unit that acquires information indicating the amount of power demand that is used by a consumer according to predetermined information that prompts adjustment of the power demand, and a control unit that controls a predetermined apparatus in accordance with a target demand amount and the information indicating the power demand amount.
Abstract:
A system (20) for controlling an air conditioner (12) includes a plurality of pressure sensors (19) and a controller (13). Each of the pressure sensors (19) is positioned at an air inlet (15) of each of the racks (11). The controller (13) is configured to receive pressure values from the pressure sensors (19) and control an airflow rate of the cooling air supplied from the air conditioner (12) based on the pressure values. The controller (13) is configured to set a target pressure value for each pressure sensor (19) (S300), acquire a current pressure value for each pressure sensor (S401), calculate a pressure drop value for each pressure sensor (19) between the current pressure value and the target pressure value (S402), and adjust the airflow rate based on a maximum value among the plurality of the pressure drop values (S403 to S410).
Abstract:
To provide a cooling device capable of cooling a heat-generating body using simple configuration, the cooling device comprises two evaporators, two condensers, a compressor and an expansion valve, and is configured so that any one among a first flow path setting, a second flow path setting, a third flow path setting, and a fourth flow path setting can be selected.