摘要:
A method of inhibiting the binding between N-methyl-D-aspartate receptors and neuronal proteins in a neuron is disclosed. The method comprises administering to the neuron an effective inhibiting amount of a peptide replacement agent for the NMDA receptor or neuronal protein interaction domain that effect said inhibition of the NMDA receptor- neuronal protein interaction. The method is of value in reducing the damaging effect of injury to mammalian cells. Postsynaptic density-95 protein (PSD-95) couples neuronal N-methyl-D-aspartate receptors (NMDARs) to pathways mediating excitotoxicity, ischemic and traumatic brain damage. This coupling was disrupted by transducing neurons with peptides that bind to modular domains on either side of the PSD-95/NMDAR interaction complex. This treatment attenuated downstream NMDAR signaling without blocking NMDAR activity, protected cultured cortical neurons from excitotoxic insults, dramatically reduced cerebral infarction volume in rats subjected to transient focal cerebral ischemia, and traumatic brain injury (TBI) in rats.
摘要:
The invention provides a combination treatment for ischemia conditions in or otherwise affecting the CNS, such as stroke. The treatment involves administration of a PSD-95 inhibitor and performing reperfusion therapy (e.g., by administration of tPA). Administering a PSD-95 inhibitor in combination with reperfusion therapy increases the efficacy of the reperfusion therapy and/or slows the decline in efficacy of reperfusion therapy with time after onset of ischemia thus extending the window in which reperfusion therapy can be administered.
摘要:
A method of inhibiting the binding between N-methyl-D-aspartate receptors and neuronal proteins in a neuron is disclosed. The method comprises administering to the neuron an effective inhibiting amount of a peptide replacement agent for the NMDA receptor or neuronal protein interaction domain that effect said inhibition of the NMDA receptor-neuronal protein interaction. The method is of value in reducing the damaging effect of injury to mammalian cells. Postsynaptic density-95 protein (PSD-95) couples neuronal N-methyl-D-aspartate receptors (NMDARs) to pathways mediating excitotoxicity, ischemic and traumatic brain damage. This coupling was disrupted by transducing neurons with peptides that bind to modular domains on either side of the PSD-95NMDAR interaction complex. This treatment attenuated downstream NMDAR signaling without blocking NMDAR activity, protected cultured cortical neurons from excitotoxic insults, dramatically reduced cerebral infarction volume in rats subjected to transient focal cerebral ischemia, and traumatic brain injury (TBI) in rats.
摘要:
The invention provides methods of delivering pharmacologic agents linked to an internalization peptide, in which an inflammatory response inducible by the internalization peptide is inhibited by co-administration of an anti-inflammatory or by linking the internalization peptide to biotin or similar molecule. Such methods are premised in part on the results described in the examples whereby administration of a pharmacological agent linked to tat at high dosages is closely followed by an inflammatory response, which includes mast cell degranulation, histamine release and the typical sequelae of histamine release, such as redness, heat, swelling, and hypotension.
摘要:
This invention relates to methods of screening for modulators of mammalian cell injury cause by TRPM7 gene and protein activity, compounds that modulate TRPM7 gene and protein activity and methods of treatment of mammalian cell injury using modulators of TRPM7 gene and protein activity.
摘要:
The invention provides methods of delivering pharmacologic agents linked to an internalization peptide, in which an inflammatory response inducible by the internalization peptide is inhibited by co-administration of an anti-inflammatory or by linking the internalization peptide to biotin or similar molecule. Such methods are premised in part on the results described in the examples whereby administration of a pharmacological agent linked to tat at high dosages is closely followed by an inflammatory response, which includes mast cell degranulation, histamine release and the typical sequelae of histamine release, such as redness, heat, swelling, and hypotension.
摘要:
The invention provides animal models and clinical trials for assessing agents for potential use in treating and effecting prophylaxis stroke and other neurological diseases, particularly those mediated at least in part by excitoxitity. The invention also provides preferred dosage and infusion regimes and pharmaceutical compositions for clinical application of such agents.
摘要:
This invention relates to methods of screening for modulators of mammalian cell injury cause by TRPM7 gene and protein activity, compounds that modulate TRPM7 gene and protein activity and methods of treatment of mammalian cell injury using modulators of TRPM7 gene and protein activity.
摘要:
The application provides data from a clinical trial of a PSD-95 inhibitor in subjects undergoing endovascular repair of an aneurysm in or otherwise affecting the CNS. The subjects were stratified by whether the aneurysm ruptured before performing the endovascular surgery. Rupture is associated with higher mortality or increased debilitation if a subject survives. The trial provided evidence of significant benefit in subjects with and without aneurysm rupture before endovascular was surgery performed. Surprisingly, the subjects benefitting most from treatment as judged both by pathology and neurocognitive outcome were those in which the aneurysm had ruptured causing a subarachnoid hemorrhage. These data constitute evidence that a PSD-95 inhibitor is beneficial not only in ischemic and hemorrhagic stroke but in forms of hemorrhage in or affecting the CNS, particularly, subarachnoid hemorrhage.
摘要:
The invention is based in part on identifying a core region of ND2 responsible for interacting with Src to within residues 289-321 of ND2 and more particularly residues 307-321 or 310-321 of ND2. Peptides including, overlapping or from within this region can be used to inhibit ND2 interaction with Src Inhibition of this interaction is useful for treatment or prophylaxis of neurological diseases and disorders, pain and cancer.