Abstract:
An ophthalmic surgical system includes a first imaging system configured to generate a first image of an eye, a second imaging system configured to generate a second image of the eye, and an image registration system to receive the first image generated by the first imaging system, receive the second image generated by a second imaging system, track a location of a distal tip of a surgical instrument in the first image, define a priority registration region in the first image, register the priority registration region in the first image with a corresponding region in the second image, and update the registration of the priority registration region in the first image with the corresponding region in the second image in real time, without registering portions of the first or second images that are outside the registration regions.
Abstract:
Some embodiments of the present technology involve methods, devices, and systems for determining an orientation of a surgical tool during ophthalmic surgery. An example method includes performing an optical imaging scan in the surgical site, using a scan pattern that intersects the surgical tool and generating a scan image from the optical imaging scan. The example method further comprises analyzing the scan image to determine a location in the scan image corresponding to where the surgical tool intersected the optical imaging scan, and determining an orientation of the surgical tool, based on the determined location.
Abstract:
Both visible and IR cameras are integrated without an increase in an optical stack height of a surgical microscope used for ophthalmic surgery. The IR camera may be used to directly and intraoperatively capture a scanning OCT measurement beam, which uses NIR light that is invisible to the human eye. An IR image from the IR camera taken from the same surgical field as displayed intraoperatively to a user of the surgical microscope may be displayed in an ocular to the user, enabling visualization of a location of an OCT scan along with actual visible images of the surgical field.
Abstract:
Systems and methods for high-resolution, wide-angle viewing of a retina of an eye using an ophthalmic microscope that can view a high-resolution image of a retina formed using a wide field of view optical system. A wide field of view optical system can involve a first lens having a diffractive surface on at least one surface and a second lens housing in a shared housing. A wide field of view optical system can involve one or more lens formed from an optical grade polymer and manufactured at a cost that allows the lens to be disposable.
Abstract:
A method of automatically detecting a retinal feature using an ophthalmic imaging system can include: acquiring an optical coherence tomography (OCT) image of a retina; segmenting the OCT image; generating a metric based on the segmented OCT image; detecting the retinal feature based on the metric; and providing an indication of the detected retinal feature to a user. An ophthalmic imaging system can include: an OCT system configured to acquire an image of a retina; a computing device coupled to the OCT system and configured to segment the image, generate a metric based on the segmented image, and detect a retinal feature based on the metric; and an audio/visual/tactile device in communication with the computing device and configured to provide at least one of an audio, visual, and tactile indication of the detected retinal feature to a user.
Abstract:
A surgical microscope may support intraoperative viewing of optical and digital images of a surgical site during surgery. The optical images may be viewed using an optical beam path from an objective lens of the surgical microscope. The digital images may be generated by redirecting or splitting the optical beam path to an imaging system that outputs digital data representing the digital image to a display for output to the user, such as through an ocular of the surgical microscope.
Abstract:
A method of processing an ophthalmic image includes: taking an image of an ophthalmic region involving an ophthalmic layer by an imaging system; constructing an image graph, comprising nodes connected by links and detected image data by an image processor; and performing a heuristic graph-search for a path on the image graph that corresponds to an image of the ophthalmic layer by assigning at least one of link-costs to links of the image graph and node-costs to nodes of the image graph; assigning heuristic-costs to at least one of the nodes and the links; creating extended paths by extending a selected path with extension links; determining path-costs of the extended paths by combining heuristic costs and at least one of link-costs and node-costs assigned to the extension-links; and selecting the extended path with the smallest path-cost.
Abstract:
Control of scanning images during ophthalmic surgery may be performed with a scanning controller that interfaces to an optical scanner used with a surgical microscope. A scan control device may receive user input, including hands-free user input, for controlling an overlay image of scanning data that is overlaid on optical image data viewed using the surgical microscope. A selected location for optical scanning may also be displayed and controlled using the scanning controller.
Abstract:
A surgical imaging system can include at least one light source, configured to generate a light beam; a beam guidance system, configured to guide the light beam from the light source; a beam scanner, configured to receive the light from the beam guidance system, and to generate a scanned light beam; a beam coupler, configured to redirect the scanned light beam; and a wide field of view (WFOV) lens, configured to guide the redirected scanned light beam into a target region of a procedure eye; wherein the beam coupler is movably positioned relative to the procedure eye such that the beam coupler is selectively movable to change at least one of an incidence angle of the redirected scanned light beam into the procedure eye and the target region of the procedure eye.
Abstract:
A method of automatically detecting a retinal feature using an ophthalmic imaging system can include: acquiring an optical coherence tomography (OCT) image of a retina; segmenting the OCT image; generating a metric based on the segmented OCT image; detecting the retinal feature based on the metric; and providing an indication of the detected retinal feature to a user. An ophthalmic imaging system can include: an OCT system configured to acquire an image of a retina; a computing device coupled to the OCT system and configured to segment the image, generate a metric based on the segmented image, and detect a retinal feature based on the metric; and an audio/visual/tactile device in communication with the computing device and configured to provide at least one of an audio, visual, and tactile indication of the detected retinal feature to a user.